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About This Manual

This  manual  introduces  basic  concepts  of  parallel  programming,  and  explains  how to use 
MTASK  to  develop  parallel  programs.  MTASK  has  subroutines  for  manipulations  of  task, 
parallel locks, and parallel events. MTASK not only works on multiprocessor computers but also 
works on uniprocessor computer. This manual has essential concept and practical techniques for 
programming in MTASK.

Assumptions About the Reader

This manual assumes that reader has experience writing, executing, and debugging Fortran 
program.

Overview of This Manual

This manual is organized as follows:

Chapter 1 Introduction.  This chapter introduces terms and concepts that the user will need to 
be familiar with before programming a multitasking application.

Chapter 2 Manipulation of Tasks.  This chapter  describes subroutines for manipulation of 
tasks, calling syntax, and where in the program the subroutines are called.

Chapter 3 Manipulation  of  Parallel  Locks.  This  chapter  describes  subroutines  for 
manipulation  of  parallel  locks,  calling  syntax,  and  where  in  the  program  the 
subroutines are called.

Chapter 4 Manipulation  of  Parallel  Events.  This  chapter  describes  subroutines  for 
manipulation  of  parallel  events,  calling  syntax,  and  where  in  the  program  the 
subroutines are called.

ii



Chapter 1. Introduction

1.1  Introduction

With achievements of computer hardware and new generation of operating systems, high 
performance computing becomes available in many fields of application. This manual introduces 
MTASK  for  developing  parallel  programs.  MTASK  based  upon  multitasking  is  a  tool  for 
developing parallel applications. Multitasking is a programming technique that allows a single 
application to consist of multiple tasks executing concurrently, and yields improved execution 
speed for individual programs if multiprocessors are available.

1.2  Manipulation of Tasks

A task is analogous to a subroutine (or a function) in a program, except for the important 
difference that it can execute in parallel with its caller. Like a subroutine, a task has arguments 
passed by its caller, and may call other subroutines. A parallel application may originate a single 
task to execute the program that is equivalent to a sequential execution, or may originate multiple 
tasks  for  the  computations.  That  originates multiple  tasks  to  execute  an application is  called 
multitasking.

A task may have private variables, and it can access global data, sharable with other tasks. 
Task can create other tasks. Creating a task has some overhead, but initialization only takes place 
at startup and does not affect the performance of the task. Instructions of tasks are sharable, tasks 
are less costly to create, delete, and schedule. When user starts an application, operating system 
creates a master task to run the program. The master task may create other tasks. The tasks that 
were created by the master task attach to the master task and can, in turn, create other tasks. All 
the tasks are in the same level, there are no parent-child relationships among them. A task can 
terminate any task, including itself. A task with unfinished work cannot be terminated, but it can 
be terminated directly from the operating system.

A task is an environment for doing work in parallel. The life of a task goes through three 
important stages: creation, completion, and termination. A task must go through these three stages 
in order. Subroutines for task manipulations are as follows:

Dispatch_??
WaitForTask
WaitForAllTasks
TerminateTask
TerminateAllTasks
WaitForAndTerminateTask
WaitForAndTerminateAllTasks

1.3  Shared and Private Data

Sequential  program does  not  distinguish  if  a  variable  is  shared  or  private.  However,  a 
parallel  (multitasking) program may execute  multiple  copies  of  a  subroutine  concurrently.  In 
order to protect the content of all variables in each copy of the subroutine, each variable involved 
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in the subroutine must be distinguished if it is shared or private. Shared data is accessible by all 
the tasks; while private data is accessible only by the task that allocates the private variable. 
Proper declaration of shared and private data is necessary in parallel programming.

By default,  fortran  variables  are  sharable  (called  static  variables).  Private  data  must  be 
explicitly  declared  by  the  statement,  for  example,  "AUTOMATIC",  or  subroutine  declaring 
private variables should be with “recursive” attribute, for  example “Recursive Subroutine" or 
"Recursive Function".

Only the shared variables are accessible by all tasks, which provide a way of communication 
between tasks. The shared data in a Fortran usually include the following types:

1. dummy arguments
2. variables defined in a common block
3. variables with initial values defined by the statement "DATA"
4. local variables declared with the attribute "SAVE"

Some Fortran compilers set the attribute "SAVE" as the default. Consult with Fortran manual for 
details.

It is a suggestion to apply name conventions for shared and private variables. For example, 
private variables may prefix with "Priv", or may end with the character $ as, "PrivA", "PrivB", 
"A$", "B$",,,,, and so on; while shared variables may prefix with "Shared". All the variables can 
be clearly identified if private or shared.

There are several advantages to sharing data:
1. It uses less memory than having multiple copies.
2. It avoids the overhead of making copies of data for each task.
3. It provides a simple and efficient mechanism for communication between tasks.

However, sharing data also has disadvantages: the most common one is a memory conflict. 
It may happen when one task is reading a memory while another task is writing on the same 
location simultaneously.  This may lead to an unpredictable result,  in order  to avoid memory 
conflict synchronization is necessary.

In some situations, a private variable has more advantage than sharing data. For example, a 
loop variable should be a private data. If a loop variable is shared, a memory conflict must take 
place. Temporary variables are private. Distinguishing sharable and private data is very important 
in multitasking programming. A common error in parallel programs is that "data that should not  
be shared is shared, and data that should be shared is not shared."

1.4  Data Dependencies

Multitasking programs deal with shared as well as private data. Private data belongs to the 
task itself, which does not affect another tasks. Tasks may access shared data, and there is data 
dependency. For example, if task "a" accesses to elements X(1), X(2),,,,  X(10), and Task "b" 
accesses elements X(8),  X(9),  X(10), X(11),,,,  X(13), then Tasks "a" and "b" depend on data 
X(8), X(9), and X(10), data dependencies. For a dependent data for example X(8), if the data is 
being read by task “a” and written by task “b” simultaneously, this must lead to the wrong result. 
To  ensure  correct  results,  code  sections  that  contain  such  dependencies  cannot  be  executed 
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simultaneously, but by one task at a time. Code sections containing dependencies are so-called 
critical sections.

The degree of data dependency is the ratio of the number of data dependent to the number of 
shared data.  In the example, the task "a" has 30% data dependencies,  and the degree of data 
dependencies  in  task  "b"  is  50%.  Less  data  dependency  may  yield  higher  efficiency.  Data 
dependence cannot be avoided in most scientific and engineering computing. Users can apply 
parallel lock to critical section to ensure the shared data can be accessed in order.

A critical section, for example, consists of the following steps:
1. to lock on parallel lock
2. to access shared data
3. to unlock parallel lock

Once a task has locked on the parallel lock, the task is the only one being able to execute the 
subsequently critical section. Another tasks cannot enter the critical section to access shared data 
until the locking task (or called lock holder) unlocks the parallel lock. The dependent data are 
allowed to be access only in a critical section, by which memory conflict is avoided. MTASK 
provides the following subroutines for parallel locks: 

1. CreateParallelLock
2. LockonParallelLock
3. UnlockParallelLock
4. DeleteParallelLock

1.5  Task Synchronization

Task synchronization and data dependency are two common problems to block a task to 
execution. Data dependency limits dependent codes to be executed in critical section by one task 
at a time. Synchronization makes tasks wait for a permission to enter a code area for execution. 
This may happen, for example, a task is preparing for the needed data for the other tasks, and then 
all the other tasks have to wait for the availability of data.

Synchronization usually applies to the two following occasions:
1. A task needs the data computed in another task so as to wait for the completion of that task.
2. A task waits for the arrival of needed data.

A parallel event is a flag that handles synchronization in task, which counts on a cycle. A 
cycle of an event begins with an initialization, and then posts the event when a task has completed 
a predefined work, and finally ends with a request to wait for the completion of the cycle. A 
parallel  event  must  create  before  use,  and must  be deleted when it  is  not  needed any more. 
MTASK provides the following functions for manipulation of parallel events:

1. CreateParallelEvent
2. InitializeParallelEvent
3. PostParallelEvent
4. WaitForParallelEvent
5. IfCompleteParallelEvent
6. CompleteParallelEvent
7. DeleteParallelEvent
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1.6  Function Partitioning

Some  applications  may  contain  several  procedures  that  could  run  simultaneously.  For 
example, a projectile contains

1. a procedure to calculate the velocity,
2. a procedure calculating the position.

The velocity and position of a projectile can be written in two independent equations, and they 
may calculate simultaneously. This example can be divided into two independent functional units 
for computing. This method is sometimes called heterogeneous multitasking, because it involves 
different  tasks  executed  in  parallel.  Function  partitioning  is  suitable  for  applications  having 
independent functions.

1.7  Data Partitioning

Opposed  to  function  partitioning,  data  partitioning  is  well  suitable  for  applications  that 
repeatedly calculate a large collection of data on certain subroutines, for example the addition of 
two vectors {C}={A}+{B}. We may develop a subroutine that receives partial elements of {A} 
and {B}, and then calculates the corresponding elements of {C}. Such kind of subroutine may 
create as multiple tasks in the same code, but with a different subset of {A} and {B}. This method 
is  sometimes called homogeneous multitasking,  because it  involves  tasks  having an identical 
procedure executed in parallel.

Some applications may be programmed on both function partitioning and data partitioning; 
while  others  may  be  programmed  on  either  function  partitioning  or  data  partitioning.  Most 
parallel  algorithms  are  based  upon  the  technique  of  data  partitioning.  If  both  programming 
methods can be effective, the data partitioning fits more applications and offers the following 
advantages over function partitioning:

1. Minimal programming effort is required, because tasks having the same subroutines.
2. It is easy to balance loads among processors.
3. When system adding or removing processors, programs may automatically adapt to the 

number of processors.

1.8  Data Distribution

Subroutines in data partitioning may create multiple tasks. Each task has an individual set of 
data. The data can be distributed among tasks by two methods: static distribution and dynamic 
distribution.

In static distribution, the data distributed to a task are predetermined before the task creates. 
For example, if five tasks originate to execute a set of data, the data may be equally divided into 
five subsets;  each task then has  an individual  subset.  Static distribution cannot  automatically 
balance workload among processors during execution. The reason is that processor is shared by 
multi-programs.
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In dynamic distribution, the data are distributed when needed. There are no data distributed 
to tasks when the tasks create. Dynamic distribution produces dynamic load balancing, and keeps 
all tasks working as long as there is work to do. Static distribution produces static load balancing. 
Dynamic distribution entails more overheads than static distribution. Each time when a set of data 
is distributed to a task, the task must check the overall status of the data to make sure if there is 
work to do.

For developing a parallel application, programmer must determine which method offers the 
best  load balancing with least overhead.  If all  the processors have balanced workload during 
execution,  static  distribution  is  more  efficient.  However,  it  is  not  always  possible  to  keep 
workload balancing on static distribution when executing with another programs. If there is a 
large variation of workload between processors,  dynamic distribution is  more efficient.  Even 
though dynamic distribution takes more overhead, dynamic distribution is more practical than 
static distribution on a multiprogramming system.

1.9  Types of Parallelism

A parallelism is a segment of statements executing a set of independent data. The efficiency 
of a parallel program relies on the parallelism and degree of data dependencies. As introduced 
previously,  degree  of  data  dependencies  is  an  index  that  indicates  the  difficulty  to  parallel 
processing.  This  section  introduces  another  parameter  to  control  efficiency.  A  parallelism is 
characterized in terms of grain size, the number of operations of a parallelism, and can be divided 
into four types as follows:

1. Very coarse parallelism: Grain size is over 2000.
2. Coarse parallelism: Grain size is between 200 and 2000.
3. Medium parallelism: Grain size is between 20 and 200.
4. Fine parallelism: Grain size is less than 20.

A  coarse  parallelism  means  that  a  relative-low  overhead  is  required  to  perform  the 
parallelism; while a fine parallelism means a relative-high overhead is necessary. Each type of 
parallelism  may  have  the  best  performance  if  the  corresponding  facilities  are  available.  For 
example, distributed processing is most well suited for very coarse parallelism; vectorization may 
make fine parallelism work well. How to determine grain size? User should think if it is worth 
parallelizing 2 operations if overhead takes more than 2 operations. Parallel program may contain 
sequential segments that are limited to a task only. A task may have three types of statement 
segment:

1. parallelism that allows all tasks to concurrently execute,
2. critical section that allows all tasks to execute, but one at a time,
3. sequential segment that allows only one task to execute.

1.10  Lifetime of  Variables

Variable  has  a  certain  lifetime that  is  the period when the  variable  exists.  The variable 
lifetime is also an important subject that has to be considered in parallel programming. Variable 
lifetime can be classified into the following:
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1. Program-term lifetime: Variables that have a program-term lifetime are allocated when the 
program begins  and  remains  until  the  program ends.  Each  variable  with  a  program-term 
lifetime has an identical address if more than one task executes concurrently. Program-term 
variable is sometimes called sharable variable, or global variable.

2. Subroutine-term lifetime: Variables, that have a subroutine-term lifetime, come into being 
when  the  subroutine  begins,  and  disappear  when  the  subroutine  ends.  A  variable  with  a 
subroutine-term  lifetime  may  have  an  individual  address  allocated  at  each  start  of  the 
subroutine.  If  several  copies  of  the  subroutine  execute  concurrently,  each  copy  of  the 
subroutine has an individual address for the subroutine-term variables. This type of variable is 
declared with the statement of "automatic" in a Fortran program.

Life cycle of  variables don't  play significant role in sequential  programs. However, in a 
parallel code, a lifetime type sometimes cannot be switched from one to the other. A variable with 
the wrong type of lifetime may lead to a fatal error in parallel processing. A private variable must 
have a subroutine-term lifetime. A shared data must have a program-term lifetime.

The lifetime of variables has to be carefully declared and dealt with in a parallel program, 
especially for  subroutine-term variables.  There is another type of error that may happen to a 
subroutine-term variable. This error is called a short-lived variable that disappears when another 
subroutines  still  need  it.  For  example,  if  a  subroutine  "A"  creates  two  tasks  which  execute 
subroutine "B". Subroutine "A" passes a subroutine-term variable "X" to subroutine "B". The 
variable "X" is allocated by subroutine "A". However, subroutine "A" ends before one or both 
copies of subroutine "B" complete their work. Under this circumstance, what will be happened? 
The end of subroutine "A" makes variable "X" disappears, but subroutine "B" still needs variable 
"X" to complete the work. Then, an error may occur due to the short life of variable "X".

A parallel program does not allow a short-lived variable to exist. There are three methods to 
prevent short-lived variables:

1. Try to dispatch all the subroutines in the main program. If that so, all the variables passed to 
the dispatched subroutine exist as long as the end of the application.

2. Declare  the  variables,  which  are  passed  to  the  dispatched  subroutine,  as  program-term 
variables if possible, such that the variables may exist during the application execution.

3. Apply task synchronization to prevent the dispatcher from ending itself until all the copies of 
dispatched subroutine complete their work.
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Chapter 2. Manipulation of Tasks

A task starts with a subroutine that may call other subroutines. All the parameters passed to 
the entry subroutine are sharable among tasks.  A task is  an environment to start  executing a 
tasking subroutine in parallel.  Tasking subroutines can be programmed in data partitioning or 
function partitioning. This chapter assumes that a tasking subroutine is ready, and discusses how 
to execute and synchronize tasks. Eight subroutines are introduced for the following purpose

1. creation of tasks
2. waiting for the completion of a task
3. termination of tasks

2.1  Creation of Tasks

This  section  introduces  subroutine  Dispatch_??, which  creates  a  task.  Once  the  tasking 
subroutine starts executing, the caller continues its execution. MTASK allows an application to 
have 64 tasks at a time. The syntax is as follows:

CALL Dispatch_??(TaskID, Procedure, Argu1, Argu2,,,,,  ArguN)

where

1. ?? is the number of arguments passed to the subroutine "Procedure". The number of arguments 
cannot be greater than 52. For example, if subroutine Procedure has 2 arguments, the calling 
statement should be written as

           CALL Dispatch_2(TaskID, Procedure, Argu1, Argu2)

Here emphasizes again that ?? is the number of arguments to "Procedure", not to Dispatch_2. 
In the example, Dispatch_2 has 4 arguments. If "Procedure" does not have an argument, the 
syntax is as:

           CALL Dispatch_0(TaskID, Procedure)

2. If the request is successful, TaskID returns a 4-byte positive integer identifying the task. If the 
request fails that may occur to originate more than 64 tasks at a time, TaskID returns a zero.

3. "Procedure" is  the name of subroutine to  be executed in  parallel.  The subroutine must  be 
declared by the statement "External" in a Fortran program as

            EXTERNAL Procedure

Or, declared as a dummy procedure in Fortran 90.

The  subroutine  "Procedure"  can  call  other  subroutines.  All  the  subroutines  directly  or 
indirectly called by "Procedure" belong to the same task. Execution of a "RETURN" statement 
in the subroutine "Procedure" ends the task.
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4. Argu1,  Argu2,,,,  and  ArguN  are  actual  arguments  that  are  being  passed  to  subroutine 
"Procedure", and are sharable among tasks. The arguments have some restrictions, and may 
not be any of the following:

       ....A loop index variable
       ....An expression requiring evaluation at run-time
       ....A constant
       ....A character string
       ....A short-lived variable

The following provides some examples of subroutine Dispatch_??. Each example assumes 
that variables have been properly declared. 

Example A: Are the following statements correct?

     DO K = 1, NumberOfTasks
        CALL Dispatch_3(TaskID(K) ,Procedure, A(K))
     END DO

No, because subroutine Procedure has  one argument,  the statement should correct  as "CALL 
Dispatch_1(...."

Example B: Are the following statements OK?

     DO K = 1, NumberOfTasks
        CALL Dispatch_2(TaskID(K), Procedure, A(K), K)
     END DO

It is not OK. The second argument "K" that is passed to the subroutine "Procedure" is the loop 
index. Can we modify the previous loop into the following?

     DO K = 1, NumberOfTasks
        J=K
        CALL Dispatch_2(TaskID(K), Procedure, A(K), J)
     END DO

where "J" is not the loop index. It does not make the right modification, because the variable "J" 
is  shared  among  tasks,  and  varies  with  the  loop  index.  "J"  is  uncertain  in  the  subroutine 
"Procedure". This is one of common problems that beginners may encounter.

A correct modification should introduce an array, for example "JTEMP", and then assign the 
loop index onto an element of "JTEMP", i.e. JTEMP(K)=K, which may be written as:

     DO K = 1, NumberOfTasks
        JTEMP(K)=K
        CALL Dispatch_2(TaskID(K), Procedure, A(K), JTEMP(K))
     END DO

Example C: Is the following statement correct?

     CALL Dispatch_1(TaskID(K), Procedure, 3.0+A(K))
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No, because the argument 3.0+A(K) should be evaluated at run-time.

Example D: Is the following statement correct?

     CALL Dispatch_1(TaskID(K), Procedure, 5)

No, because the argument 5 is a constant.

Example E: Is the following statement correct?

     CALL Dispatch_1(TaskID(K), Procedure, 'Input.dat')

No, because the argument 'Input.dat' is a character string. Dispatch_?? does not pass a character 
string. If it is necessary to pass a character string, define a one-byte integer array, and then assign 
the decimal value of character string onto the 1-byte integer array, and pass the 1-byte integer 
array to subroutine "Procedure". The 1-byte integer array is reversed into a character string in 
subroutine "Procedure".

Example F: Are the following statements correct?

     Recursive SUBROUTINE AAA(Argu_1,,,,,
     INTEGER (4) :: TaskID(,,,,
     Integer (4) :: M
     EXTERNAL TEST
     :
     :
     DO K = 1, NumberOfTasks
        CALL Dispatch_1(TaskID(K), TEST, M)
     END DO
     RETURN
     END SUBROUTINE AAA

No. Once the subroutine "AAA" completes dispatching subroutine "TEST" in the loop, subroutine 
"AAA" executes the statement of "RETURN", which destroys variable "M" that is a subroutine-
term lifetime. However, subroutine "TEST" still needs the variable "M" to complete the work. 
There are two ways to correct this problem. The first one is to declare the variable "M" with the 
"SAVE" attribute. That makes variable "M" a program-term variable.

The second method is  to apply a task synchronization that  prevents the dispatcher from 
executing the "RETURN" statement until all the tasks complete their work. That may be written 
as:

     Recursive SUBROUTINE  AAA(Argu_1,,,,,
     INTEGER (4) :: TaskID(,,,,,
     Integer (4) :: M
     EXTERNAL TEST
     :
     :
     DO K = 1, NumberOfTasks
        CALL Dispatch_1(TaskID(K), TEST, M)
     END DO
     DO K = 1, NumberOfTasks
        CALL WaitForAndTerminateTask( TaskID(K) )
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     END DO
     RETURN
     END SUBROUTINE AAA

The subroutine "WaitForAndTerminateTask" blocks the caller until the specified task completes 
its work.

Example G: What is the difference between the following two segments?

     [segment 1]
        DO K = 1, NumberOfTasks
           CALL Dispatch_??(TaskID(K), SubA,,,,)
        END DO
        CALL WaitForAndTerminateAllTasks

     [segment 2]
        DO K = 1, NumberOfTasks-1
           CALL Dispatch_??(TaskID(K),SubA,,,,)
        END DO
        CALL SubA(,,,)
        CALL WaitForAndTerminateAllTasks

Both  of  them  execute  "NumberOfTasks"  copies  of  subroutine  "SubA"  concurrently.  The 
difference is on master task. In the first segment, the master task does not execute subroutine 
"SubA". The master task in "Fragment 2" executes subroutine "SubA". "Segment 2" takes less 
overhead and is more efficient because "Segment 1" originates one more task.

2.2  Waiting For the Completion of Tasks

The "WaitFor" subroutines provide a way to allow a task to wait for the completion of work 
assigned to tasks. These subroutines may check if a task has completed its work. There are no 
parent-child relationships among tasks. Any task may issue a request to wait for another tasks. 
However, don't  let  a  task wait  for  the completion of itself.  Waiting for  itself  will  result  in a 
deadlock. A deadlock causes a program not to execute. An example is as follows: task "X" issues 
a  request  to  wait  for  the  completion  of  task  "Y",  while  task  "Y"  is  waiting  for  task  "X". 
Apparently, neither task "X" nor task "Y" may complete. Here introduces three subroutines for 
the WaitFor request:

1. WaitForTask
2. WaitForAllTasks.

The syntax of WaitForTask is as follows:

             CALL WaitForTask(TaskID)

where TaskID is the identifier of the task that must complete its work to satisfy the statement. If 
the  task  identified  by  TaskID  has  been  complete,  the  caller  returns  from  the  subroutine 
immediately; otherwise the caller is blocked until the work assigned to the task identified by 
TaskID has been completed. The request to WaitForTask is ignored, if the TaskID is invalid. This 
function makes sure if a certain task has completed its work.
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The syntax of routine WaitForAllTasks is as follows:

                CALL WaitForAllTasks

There are no arguments required in the routine. The caller is blocked until all the tasks that are 
created by Dispatch_?? have finished their work. A task created by Dispatch_?? cannot issue a 
request  to WaitForAllTasks.  That  may make the  caller  wait  for  the completion of itself,  and 
results in a deadlock. The WaitForAllTasks subroutine must be called from the master task. A 
deadlock sometimes may be solved by means of:

1. Try to call WaitFor in the master task.
2. If it cannot help but request a WaitFor in a task created by subroutine Dispatch_??, be sure not 

to wait for itself.

Multiple WaitFor requests to the same task is ignored; for the following example,

                CALL WaitForTask(1)
                CALL WaitForTask(1)
                CALL WaitForTask(1)

Only the first WaitFor request is actually performed. The second and third requests are ignored. 
The WaitFor subroutines clear the status for termination. Once a task has completed its work, the 
task can be terminated. WaitFor and Terminate work together as a pair.

2.3  Termination of Tasks

An  attempt  to  delete  a  task  with  unfinished  work  is  ignored.  There  are  two  types  of 
subroutine for terminating tasks, TerminateTask and TerminateAllTasks.

The syntax for TerminateTask is as follow:

                CALL TerminateTask(TaskID)

This function deletes the task identified by TaskID. If TaskID is a valid identifier, the caller will 
be blocked until the task identified by TaskID is deleted. If TaskID is an invalid identifier, i.e., it 
is not a task created by Dispatch_??, the calling request is ignored. This function usually follows 
WaitForTask.

The syntax for TerminateAllTasks is as follow:

                   CALL TerminateAllTasks

This routine does not require an argument, and deletes all the tasks created by Dispatch_??. This 
subroutine usually follows the WaitForAllTasks subroutine in the master task as:

                CALL WaitForAllTasks
                CALL TerminateAllTasks
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The most common error resulted from Terminating subroutines is an attempt to delete a task with 
unfinished work.

2.4  Waiting For and Terminating Tasks

As mentioned before, the WaitFor and Terminate subroutines work together as a pair, i.e.,

                CALL WaitForAllTasks
                CALL TerminateAllTasks

MTASK has subroutines those combine two functions, for example, WaitForAndTerminateTask 
and WaitForAndTerminateAllTasks.

The syntax for WaitForAndTerminateTask is as follow:

            CALL WaitForAndTerminateTask( TaskID )

where  TaskID is  the  identifier  of  the  task.  This  function  waits  for  the  completion  of  work 
assigned to the task identified by TaskID, and then terminates the task. This function is equivalent 
to the following statements:

                CALL WaitForTask( TaskID )
                CALL TerminateTask( TaskID )

The syntax for WaitForAndTerminateAllTasks is as follow

                CALL WaitForAndTerminateAllTasks

which is equivalent to the following statements:

                CALL WaitForAllTasks
                CALL TerminateAllTasks
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Chapter 3.  Manipulation of Parallel Locks

Parallel locks handle critical sections. A shared-data is not allowed to access by multiple 
tasks  simultaneously.  This  chapter  introduces  subroutines  for  manipulation  of  parallel  locks. 
When a task enters the critical section, the task must lock on the parallel lock. And, when the task 
exits the critical section, the task unlocks the lock. Four subroutines are introduced as follows:

1. CreateParallelLock
2. DeleteParallelLock
3. LockonParallelLock
4. UnlockParallelLock

3.1  Definitions

The syntax for CreateParallelLock is as follows

              CALL CreateParallelLock(LockID)

This function creates a parallel lock, and returns a 4-byte positive integer LockID as the identifier 
of the lock. Mtask allows an application to create 64 parallel  locks simultaneously. The lock 
identifier requires when obtaining, releasing, or termination of the lock. A lock has to be created 
by this function before use. This function is usually called from the master task.

The syntax for DeleteParallelLock is as follows:

               CALL DeleteParallelLock(LockID)

This function deletes the parallel lock identified by LockID. A parallel lock must be deleted when 
it is no longer needed in an application so as to free memory. This function is usually called from 
the master task.

The syntax for LockonParallelLock is as follows:

        CALL LockonParallelLock(LockID)

This function is called when the caller attempts to enter the critical section. If there is no other 
task holding the lock, the caller may immediately execute the critical section and becomes a lock 
holder; otherwise, the caller is blocked until the current lock holder releases the lock. A call to the 
subroutine LockonParallelLock" is the first statement of a critical section. This function is usually 
called in a tasking subroutine.

The syntax for UnlockParallelLock is as follows:

        CALL UnlockParallelLock(LockID)

This function releases the lock identified by LockID. Only the current holder may release the 
parallel lock. Once the lock has been released, one of the other tasks if they are waiting for the 
lock may obtain the lock and becomes a new holder.  A call  to routine "UnlockParallelLock" 
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means an end of a critical section. A pair of "LockonParallelLock" and "UnlockParallelLock" 
control access of a shared data area. That ensures that the shared data is accessed by one task at a 
time. This function is usually called in a tasking subroutine.

3.2  Critical Section

Critical section has example statements as:

      CALL LockonParallelLock(LockSectionA)
         [critical operations, i.e.,
                   access a shared read-write data area]
      CALL UnlockParallelLock(LockSectionA)

It  begins  with  a  call  to  the  subroutine  "LockonParallelLock",  and  ends  at  a  call  to  the 
subroutine "UnlockParallelLock". When a task returns from the subroutine LockonParallelLock, 
it is the only task (called lock holder) that executes the critical section. Before the lock released 
by the lock holder, all the other tasks that attempt to enter the critical section are blocked in the 
subroutine  LockonParallelLock  until  the  holder  releases  the  parallel  lock  in  subroutine 
UnlockParallelLock. And, one of the waiting tasks becomes a new lock holder that immediately 
executes the critical section. The new holder keeps locking out the other waiting tasks off the 
critical section. This mechanism protects the critical section to be executed by one task at a time.

If a lock holder never released its lock, a deadlock may occur. That inappropriately handles 
parallel locks may result in a deadlock. The operations in critical section have to be reduced to the 
minimal so as to improve the performance.

Lock contention is also an important factor that needs to be dealt with. In the situation of low 
lock contention, the caller won't be blocked when requesting a lock. There are two methods to 
reduce lock contention:

1. Try to reduce the operations in a critical section to the minimal.
2. Try to increase the grain size of a parallelism, such that the time spent in a critical section 

becomes relatively small.
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Chapter 4.   Manipulation of Parallel Events

This chapter  introduces subroutines  for  task synchronization.  Parallel  events  handle  task 
synchronization. MTASK has nine subroutines for parallel event, which are as:

1. CreateParallelEvent
2. InitializeParallelEvent
3. PostParallelEvent
4. WaitForParallelEvent
5. IfCompleteParallelEvent
6. CompleteParallelEvent
7. DeleteParallelEvent

4.1  A Cycle of an Event

A parallel event counts on cycle. A cycle means all the tasks have satisfied a request. When 
completing a predefined work, a task must post the parallel event once. MTASK accumulates the 
posts.  Once  the  event's  post-count  reaches  the  specified  counts,  a  cycle  of  parallel  event  is 
satisfied. A cycle of an event goes through the following steps:

1. an initialization that sets a requirement for tasks to reach
2. post of event when a task satisfies a count
3. the end of the event that waits for the completion of the cycle

For example, if there are ten subsets of data to be calculated. A cycle is initialized to ten. 
When finishing a subset, a task posts the parallel event once. When the post-count is less than ten, 
tasks cannot leave the parallelism, but keep working and waits until the post-count reaches ten. 
This mechanism allows tasks to wait for the completion of a parallelism. When the post-count 
reaches ten,  a  cycle of  the parallel  event  is  complete.  This indicates that  the ten subsets  are 
complete,  and all  the tasks are free for  the next parallelism. When applying parallel  event to 
synchronize tasks, the count can be defined to several ways. 

4.2  Definitions

The syntax for CreateParallelEvent is as follow:

             CALL CreateParallelEvent(EventID)

This function creates a parallel event. MTASK allows an application to have 64 parallel events at 
a time. If calling request is successful, EventID returns a 4-byte positive integer identifying the 
event. If calling request fails, the variable EventID returns a zero. The identifier is required when 
manipulating the  event.  A parallel  event  must  be created by this  subroutine before  use.  This 
function is usually called from the master task.

The syntax for InitializeParallelEvent is as follow:

              CALL InitializeParallelEvent(EventID,Count)
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This function initializes a cycle of parallel event. EventID is the identifier of the parallel event. 
Count is a 4-byte positive integer. When completing a cycle, an event can be re-initialized into 
another cycle. If an event has not completed a cycle,  re-initializing the event may lead to an 
unpredictable result.

The syntax for PostParallelEvent is as follow:

              CALL PostParallelEvent(EventID)

This subroutine posts the specified event identified by EventID.

The syntax for WaitForParallelEvent is as follow:

              CALL WaitForParallelEvent(EventID)

This function makes a task synchronize with the other tasks.  EventID is  the identifier  of  the 
parallel event. If a cycle of the event has completed, caller immediately returns; otherwise, the 
caller will be blocked until the cycle is complete. The completion of a cycle means the specified 
event's post-count is reached the "Count".

The syntax for IfCompleteParallelEvent is as follow:

              CALL IfCompleteParallelEvent(EventID,Yes)

This  function  extends  a  cycle  of  the  event  to  execute  a  sequential  segment  that  follows  a 
parallelism. A tasking subroutine may contain three kinds of segment: 

1. parallelism that allows all tasks to execute concurrently
2. critical section that allows all tasks to execute but one at a time
3. sequential segment that allows only one task to execute

Synchronization can be handled by parallel event. A critical section is controlled by parallel 
lock.  Subroutine  "IfCompleteParallelEvent"  is  applied  to  the  combination  of  parallelism and 
sequential  segment.  If  a  sequential  segment  follows  a  parallelism,  "IfCompleteParallelEvent" 
provides a mechanism for task to execute the sequential segment as:

1. to wait for the completion of a cycle
2. to return a flag "Yes" that directs a task to execute the sequential segment or just to jump over 

the sequential segment.

"Yes" is a 4-byte logical variable. Calling this routine, only one task will get a false "Yes". The 
task that returns a false "Yes" must continue executing the sequential segment, and the tasks that 
return  a  true  "Yes"  must  jump  over  the  sequential  segment.  Until  one  task  completes  the 
sequential segment, the other tasks cannot be free. For example, 

    :
    :
    CALL PostParallelEvent(EventID)
    CALL IfCompleteParallelEvent(EventID,Yes)
    IF( .NOT.YES ) THEN
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    :
    :  [sequential segment]
    :
       CALL CompleteParallelEvent(EventID)
    END  IF
    :
    :

When the event's post-count reaches the "count", only one task executes the sequential segment. 
The  subroutine  "CompleteParallelEvent"  must  be  the  last  statement  in  the  block  of 
"IF(.NOT.YES)", that frees the other tasks blocked in routine "IfCompleteParallelEvent".

The syntax for CompleteParallelEvent is as follow:

            CALL CompleteParallelEvent(EventID)

EventID  is  the  identifier  of  the  parallel  event.  This  function  frees  the  tasks  blocked  in  the 
subroutine "IfCompleteParallelEvent".

The syntax for DeleteParallelEvent is as follow:

               CALL DeleteParallelEvent(EventID)

This function deletes  the  specified event  identified by EventID, and is  usually  called by the 
master task. This subroutine is called if an application does not need the event any more. An 
event is deleted once.
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