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ABSTRACT

Modern processors have multiple cores, making multiprocessing essential for competitive desktop linear

algebra. Asynchronous processing with much inherent parallelism can be derived by using a directed

acyclic graph (DAG) to represent the data dependencies between tasks.

In this paper, we present our implementation of a DAG-based Cholesky factorization, comparing several

different scheduling approaches for the prioritisation of tasks. We demonstrate that complex scheduling

approaches offer only a small performance improvement over very simple heuristics.

Our factorization is implemented in Fortran 95 using OpenMP.

Keywords: Cholesky factorization, DAG-based, symmetric linear systems, parallel, Fortran 95, OpenMP.

AMS(MOS) subject classifications:

1 Computational Science and Engineering Department, Rutherford Appleton Laboratory, Chilton,

Oxfordshire, OX11 0QX, England, UK.

Email: jonathan.hogg@stfc.ac.uk

Work supported by EPSRC grant EP/F006535/1.

Current reports available from http://www.numerical.rl.ac.uk/reports/reports.html.

December 24, 2009



1 Introduction

A common task in scientific software packages is solving linear systems

Ax = b

where A is a (possibly large) dense positive definite symmetric matrix of order n and b is the known right

hand side. We follow a standard approach of obtaining the Cholesky factorization

A = LLT

and performing forward and backward substitutions, solving

Ly = b

LT x = y.

Serial techniques for the solution of such problems on cache-based architectures are well known, for

example LAPACK [2] and HSL MA54 [1] (the latter also supports partial factorizations, see Section 5).

ScaLAPACK [3] and others present both shared and distributed memory variants of these algorithms

utilising fork-join parallelism. Recent papers from Buttari et al. [4, 5] indicate that approaches based on

directed acyclic graphs (DAGs) result in much better parallel speedup because of relaxed synchronisation

constraints. Related work focusing more on BLAS operations is considered within the FLAME architecture

[7].

In this paper, we present our implementation of a Cholesky factorization based on a task DAG approach,

proposing new prioritisation schemes and performing a comparison with others. Section 2 describes the

task DAG of a Cholesky factorization, while Section 3 shows how we execute such a DAG given some

prioritisation. In Section 4 we present our approach to prioritisation. Details of our implementation are

given in Section 5. Finally, in Sections 6 and 7, we give numerical results and our conclusions.

2 Cholesky task DAGs

A standard right-looking block factorization of a matrix, such as that shown in Algorithm 1, divides the

matrix A into blocks Aij with a given block width nb — giving us nblk blocks in each row or column (the

last block of a row or column may be smaller than nb). The steps are largely analogous to those of a

standard Cholesky factorization.

We denote the block operations by the notation factor(j), solve(i, j) and update(i, j, k) to get the form

shown in Algorithm 2. We can reorder many of these operations, for example we can move to a left-looking

factorization (such as Algorithm 3), or one of several other variants. In fact we can have any variant we like

so long as we have the data we are using in each operation “ready”. We capture these data dependencies

using a DAG, where an arrow from task 1 to task 2 means that we cannot start task 2 until task 1 has

completed. Figure 2.1 shows the task DAG for the 4× 4 case. The specific dependencies are:

factor(i) requires update(j, k, j) for k = 1 . . . j − 1.

solve(i, j) where i ≥ j requires factor(j) and update(i, k, j) for k = 1 . . . j − 1.

update(i, j, k) where i, k > j and i ≥ k requires solve(i, j) and solve(k, j).

We can execute many of these operations in parallel, we merely need to obey the task DAG to ensure

that we have the necessary data.

In the remainder of this paper, we shall refer to the task DAG using standard graph terminology. Each

task is represented by a node, with dependencies represented by directed edges. If an edge from node i

to node j exists then j is a child of i, with i as a parent of j. A node with no parents is a root and a

node with no children is a leaf. A path is an ordered sequence of nodes connected by edges. Node j is a

descendant of node i if there exists a path from node i to node j.
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Algorithm 1 Standard right-looking block factorization, overwriting A with L

for j = 1, nblk do

Ljj ← factor(Ajj)

for i = j + 1, nblk do

Lij ← AijL
−T
jj

for k = j + 1, i do

Aik ← Aik − LijL
T
kj

end for

end for

end for

Algorithm 2 Right-looking block factorization

for j = 1, nblk do

factor(j)

for i = j + 1, nblk do

solve(i, j)

for k = j + 1, i do

update(i, j, k)

end for

end for

end for

Algorithm 3 Left-looking block factorization

for j = 1, nblk do

for k = 1, j − 1 do

for i = j, nblk do

update(i, k, j)

end for

end for

factor(j)

for i = j + 1, nblk do

solve(i, j)

end for

end for
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Figure 2.1: Task DAG for a 4× 4 block Cholesky factorization
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3 Task dispatch

Algorithm 4 shows pseudo-code for how we might execute a task DAG using a task heap. The task heap

contains tasks, with subroutines get task() and add task() that allow us to retrieve a task or add a new

one. The algorithm retrieves a task, does the necessary work and then updates dependency information

of other tasks, adding any for which the dependencies have been satisfied.

Algorithm 4 Task dispatch code for a simple execution of the task DAG

Initialise dep(i, j) for 1 ≤ i ≤ j ≤ nblk to number of parents of corresponding factor or solve nodes

loop

call get task(task)

select case(task)

case(factor)

Perform Cholesky factorization of block (j, j)

for i = j + 1, nblk do

dep(i, j) = dep(i, j)− 1

if dep(i, j) == 0 then call add task(solve(i, j))

end for

case(solve)

Lij = AijL
−T
jj

dep(i, j) = −2 ! Flag that this solve has been performed

for k = j + 1, i do

if dep(k, j) == −2 then call add task(update(i, j, k))

end for

for k = i + 1, nblk do

if dep(k, j) == −2 then call add task(update(k, j, i))

end for

case(update)

Aik = Aik − LijL
T
kj

dep(i, k) = dep(i, k)− 1

if dep(i, k) == 0 then

if i 6= k then

call add task(solve(i, k))

else

call add task(factor(k))

end if

end if

end select

end loop

The dep(:,:) array is initialised before we start to contain the number of tasks that must be executed

for a block before we can execute a factor or solve task as appropriate. Each time a dependency (either

an update from the left or the factorization of the diagonal block above) is met we decrement this count,

adding the task when there are no more dependencies to satisfy (clearly the dependency count is equal to

the number of edges entering the corresponding factor or solve node in the task DAG).

Once the task solve(i, j) has been placed in the task heap, the element dep(i, j) can be reused as a flag

to indicate whether that particular solve task has completed. After completion of the task solve(i, j) we

scan through the dep elements of column j checking for update tasks that are ready to be added to the

task heap.

To run this algorithm in parallel (shared memory) we need to prevent data races. A data race occurs

when two threads are trying to read or write to the same location at once. We avoid this in our code
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through the use of locks, as shown in Algorithm 5. We require locks to prevent multiple threads accessing

the same dep(:,:) variable simultaneously. While we could use an OpenMP critical section (a section of the

code that only one thread can execute at a time), the use of specific locks allows many of these operations

to take place in parallel. Following a solve we insist that only one thread looks at the entire column

trying to add updates to avoid having the same task added more than once. We minimise the amount of

time spent while holding a lock by performing expensive numerical operations before acquiring them. Of

specific interest is the need to prevent more than one thread performing an update operation on the same

block simultaneously. To this end we have a special set of locks (in the array update lock(:, :)). If a thread

is unable to acquire the lock for its target block, it performs the update into a buffer T , which is then

added to a list of delayed updates for later application. Before performing the factor or solve task for the

target block, all pending updates to the block from the list are performed. Note that there is a lock in the

get task() and add task() subroutines that prevents more than one task modifying the task heap at once.

As the algorithm is described, we can clearly generate a large number of temporary buffers T . A

number of implementational tricks may be employed to reduce the memory used:

• If we require an update buffer, attempt to add to an existing one for that block. This requires an

additional lock to be associated with each update buffer. This technique limits the number of buffers

for any given block to the number of processors, though we would expect far fewer.

• If we have exhausted available memory for update buffers then we can instead wait to acquire a lock

on the block we need to update. This strategy could however result in performance issues if the

memory limit is often encountered.

4 Prioritisation

We now consider associating with each task in the heap of available tasks a number that we will refer to

as a schedule. Calls to get task() will always return the task on the heap with the lowest schedule. This

allows us to prioritise tasks so as to keep the number of available tasks on the heap large — thus ensuring

that processors are rarely idle waiting for tasks.

Buttari et al. [5] recommend always ensuring that tasks on the critical path (which they unusually

define as the path connecting all nodes with the highest number of outgoing edges) are executed with a

high priority. We consider three variations of their scheduling strategy:

• All nodes of the same type have the same priority. Nodes that typically have a higher number

of outgoing edges are scheduled first. (i.e. any factor nodes are scheduled first, then solves, then

updates)

• Nodes with a higher number of outgoing edges are scheduled first.

• Nodes with a higher number of descendants are scheduled first.

The first two options are easily realised; for the third option we can calculate the number of descendants

using the following recurrence relations

descendants(factor(j)) = # solves in col j + # updates from col j + descendants(factor(j + 1)) + 1

= (nblk − j) + 1

2
(nblk − j)(nblk − j + 1) + descendants(factor(j + 1)) + 1

descendants(solve(i, j)) = # updates from block + descendants(solve(i, j + 1)) + 1

= (nblk − j) + descendants(solve(i, j + 1)) + 1

descendants(update(i, j, k)) =

{

descendants(factor(k)) + 1 i = k

descendants(solve(i, k)) + 1 i 6= k
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Algorithm 5 Task dispatch code with synchronisations

loop

call get task(task)

select case(task)

case(factor)

Apply any updates from update list

Perform Cholesky factorization of block (j, j)

for j = i + 1, nblk do

Acquire lock(i, j)

dep(i, j) = dep(i, j)− 1

if dep(i, j) == 0 then call add task(solve(i, j))

Release lock(i, j)

end for

case(solve)

Apply any updates from update list

Lij = AijL
−T
jj

dep(i, j) = −2

Acquire lock(j, j)

for k = j + 1, i do

if dep(k, j) == −2 then call add task(update(i, j, k))

end for

for k = i + 1, nblk do

if dep(k, j) == −2 then call add task(update(k, j, i))

end for

Release lock(j, j)

case(update)

if Can acquire update lock(i, k) then

Aik = Aik − LijL
T
kj

Release update lock(i, k)

else

T = −LijL
T
kj

Place T upon update list for block Aik.

end if

Acquire lock(i, k)

dep(i, k) = dep(i, k)− 1

if dep(i, k) == 0 then

if i 6= k then

call add task(solve(i, k))

else

call add task(factor(k))

end if

end if

Release lock(i, k)

end select

end loop
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Figure 4.2: Scheduling for a 4× 4 Cholesky factorization
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which have closed form solutions

descendants(factor(j)) = 1

6
(nblk − j)(nblk − j + 1)(nblk − j + 5) + (nblk − j)

descendants(solve(i, j)) = i
(

nblk − 1

2
i + 3

2

)

− j
(

nblk − 1

2
j + 3

2

)

+ descendants(factor(i))

descendants(update(i, j, k)) =

{

descendants(factor(k)) + 1 i = k

descendants(solve(i, k)) + 1 i 6= k

Each of these approaches runs the risk of not prioritising a long chain of tasks that could end up being

left to the end and causing task starvation for some processors.

In this paper, we shall define the critical path as the longest path from a root node to a leaf node.

This represents the shortest sequence of events that must be executed in serial if an infinite number of

processors is available and all tasks take the same amount of time (though the latter of these assumptions

is not generally the case and we will relax this assumption later). Figure 4.2 shows the critical path for

our 4× 4 example marked on the graph as the bold edges.

If we continue our assumptions that all tasks take an equal amount of time and that we have sufficient

processors to complete the critical path scheduling on time, then we can consider our tasks to occupy

discrete time slices, numbered from 1. Our schedule number is derived as the latest time slice in which

a task can be scheduled so that we can still meet the critical path. The numbering on Figure 4.2 shows

such a scheduling for our 4× 4 example.
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In general the critical path is unique and consists of all the factor tasks and the shortest path between

them, that is, the tasks solve(j, j − 1) and update(j, j − 1, j) for j = 1, . . . , nblk. We can thus derive the

schedules for these tasks as

schedule(solve(j, j − 1)) = 3j − 4 j = 2, . . . , nblk

schedule(update(j, j − 1, j)) = 3j − 3 j = 2, . . . , nblk

schedule(factor(j)) = 3j − 2 j = 1, . . . , nblk

We can now work with a recurrence for non-critical tasks

schedule(update(i, j, k)) =

{

schedule(solve(i, k))− 1 i 6= j

schedule(factor(k))− 1 i = j

schedule(solve(i, j)) = min

(

min
k=j+1,i

[schedule(update(i, j, k))] , min
k=i+1,nblk

[schedule(update(k, j, i))]

)

− 1

These equations are satisfied by the following closed form solutions:

schedule(factor(j)) = j + 2j − 2

schedule(solve(i, j)) = i + 2j − 2

schedule(update(i, j, k)) = i + 2k − 3

If we now consider the case where we have insufficient processors to meet the critical path (i.e., we

cannot schedule tasks in such a way that the final task finishes in the time slot our analysis has given it),

is this schedule giving us a good prioritisation? Not always — consider a large collection of tasks that do

not lie on the critical path, but require the completion of a number of dependencies before they become

available. The dependencies for these tasks are not prioritised and, as a result, few tasks are available

early in the execution sequence. However, due to the regular nature of a dense Cholesky factorization, we

believe that the above schedule gives a near optimal scheduling provided that a sufficiently small block

size is used.

We also consider relaxing the assumption that all tasks take the same amount of time. We assume all

blocks are of size nb and consider the flop counts to be as follows:

flops(factor(j)) = 1

3
nb3 + O(nb2)

flops(solve(i, j)) = nb3

flops(update(i, j, k)) =

{

2nb3 i 6= k

nb3 i = k

We hence give the factor, solve and update tasks weights of 1, 3 or 6 respectively and then ask again for a

recurrence relation to find the schedules, this time with no assumption on the critical path.

schedule(factor(j)) = min
i=j+1,nblk

(schedule(solve(i, j)))− 1

schedule(solve(i, j)) = min

(

min
k=j+1,i

[schedule(update(i, j, k))] , min
k=i+1,nblk

[schedule(update(k, j, i))]

)

− 3

schedule(update(i, j, k)) =

{

schedule(solve(i, k))− 6 i 6= j

schedule(factor(k))− 3 i = j

With these new relations, we observe that there is no longer a single unique critical path. Instead, we

identify the set of tasks belonging to any critical paths as factor(1), factor(nblk), all solves and all updates

of the form update(i, j, j + 1). This represents the sequence of updating the whole of the next column as

soon as possible. The reason this is so different from the old critical path is that the process of updating

and factoring the diagonal is faster than that of updating the first column we need to solve. All solves are

on the critical path as the critical path needs to reach each column for all block rows simultaneously.
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The following formulae represent an explicit solution of the above

schedule(factor(j)) =

{

9(j − 1) + 1 j 6= nb

9(j − 1)− 1 j = nb

schedule(solve(i, j)) = 9(j − 1)

schedule(update(i, j, k)) =







9(j − 1)− 5 i = k

9(j − 1)− 4 i 6= k, k 6= j + 1

9(j − 1)− 2 i 6= k, k = j + 1

5 Implementation

We implemented the algorithm described in the previous sections as the code HSL MP54 in the HSL software

library [6]. It is written in Fortran 95 and has been primarily designed to replace the current partial

factorization kernel (HSL MA54) used in that library which currently makes use of fork-join parallelism. We

use the OpenMP 2.5 standard to implement our shared memory parallelism.

In addition to a standard (complete) Cholesky factorization, our code also supports a less common but

related problem that arises as a dense subproblem in sparse multifrontal matrix factorizations. This is the

partial factorization

A =

(

A11 AT
21

A21 A22

)

=

(

L11

L21 I

) (

I

S22

) (

LT
11 LT

21

I

)

where the columns of A have been partitioned into two sets, one of which is fully factorized and the other

is updated by this factorization. The corresponding forward and backward substitutions are

(

L11

L21 I

)

y = b and

(

LT
11 LT

21

I

)

x = ỹ.

Clearly these operations can be performed using a variant of the algorithm we have so far described, which

just omits the relevant factor task when it reaches the second set of columns. As our scheduling still

prioritise factorizing the diagonal elements and solving we do not see any need to rework these schedules

for this case, and indeed the surfeit of update tasks will allow us to smooth the tail of the computation.

Our code uses a job queue paradigm. Each factorization or forward/back solve is considered as a

job, which is itself composed of many tasks such as those described in the previous sections. We have

subroutines that place jobs in the job queue, but do no work on it, and a work subroutine that actually

performs these jobs. The current state of the job queue and associated task heap are stored in a shared

variable of type mp54 keep. This allows multiple instances of HSL MP54 to be run using the same team of

threads if multiple independent jobs are available. Each thread can join a pool of workers at any stage

in a job, picking up the next available task when it joins. This ability allows easy load balancing to be

achieved at a level above that of our code, for example in a tree-based parallel factorization of a sparse

matrix.

We enforce the condition that for each job queue, no job may start before its predecessor has completed.

This simplifies the coding of the prioritisation and prevents naive users from introducing data races.

Internally we use a blocked hybrid form similar to that of Anderson et al. [1] for storing the data in a

BLAS-compatible fashion while still using minimal storage. The user’s data is by default rearranged from

a lower packed format to this format in parallel with the factorization. Any columns that are not pivoted

upon in a partial factorization are rearranged back to lower packed format to enable the user to easily

perform manipulations such as assembly in to other matrices.

Solves have also been written in a task DAG fashion but, using the block size from the factorization,

these are not as efficient as using a smaller block size. This is because a solve produces O(n2) tasks

compared to the O(n3) from a factorization. We expect the overheads of such a rearrangement to outweigh

any gains unless a large number of solves are required, and so have not pursued this avenue of research.
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Table 6.1: Specification of test machines

2-way quad Harpertown (fox) 16-way Power5 (HPCx)

Architecture Intel(R) Xeon(R) CPU E5420 IBM Power5

Clock 2.50Ghz 1.50 Ghz

Cores 2× 4 16× 1

Theoretical peak (1/8 cores) 10 / 80 Gflop/s 6 / 96 Gflop/s

DGEMM peak (1/all cores1) 9.3 / 72.8 Gflop/s 5.0/70.4 Gflop/s

Memory 8GB 32GB

Compiler Intel 10.1 with -fast IBM xlf 10.1

BLAS Intel MKL 10.0 IBM ESSL
1 Measured by using MPI to run independent matrix-matrix multiplies on each core

Our code implements two simple performance enhancements over the Algorithm of Section 3. Firstly,

a thread will keep a task for itself if it would otherwise add it to the stack with the highest priority.

This improves cache efficiency as the task will reuse some of the data from the current task. Secondly,

as discussed in Section 3, we limit the amount of space required for the delayed update by looking for an

existing update to the same block; if we find one we apply the update to it.

We note that for small (n < 2000) matrices, tuning of our code proved difficult due to context switching

of our codes by the host operating system. Further, because of overheads inherent in communication, our

code runs slower in parallel than in serial for very small matrices (n < 200 on our test machine). We were

able to increase the performance in these circumstances by careful tuning of the get task() routine so only

one thread is ever spinning while waiting for tasks to appear in the queue — the others wait on a lock,

making use of the far more efficient spinlocking mechanism of the OpenMP implementation. This seems

to have helped reduce the number of cache misses on the threads doing actual work caused by use of the

flush directive on idle threads.

6 Numerical Results

We present results mainly on our test machine fox (detailed in Table 6.1), however we also supply limited

results from runs on a single node of the UK supercomputer HPCx. For each set of parameters (code,

scheduling variant, order of matrix n, and number of threads nthread) we experimented to find the

optimal block size; the reported results are for these optimal choices.

6.1 Choice of scheduling technique

We consider results for the five different scheduling methods discussed in Section 4. We shall refer to them

by the following names

Simple All tasks of the same type have the same priority (method of Buttari et al.)

Max Child Tasks are prioritised by their number of children. The node with the largest number of

children goes first.

Max Descendants Tasks are prioritised by their number of descendants. The node with the largest

number of descendants goes first.

Fixed-CP Tasks are scheduled according to the critical path assuming all tasks take the same amount

of time.

Weighted-CP Tasks are scheduled according to the critical path with weightings based on their operation

counts.
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Table 6.2: Comparison of different scheduling for complete factorization of matrices on 8 threads. Speed is

measured in Gflop/s on fox, and percentages in brackets show performance gain over the Simple strategy.

n Simple Max Child Max Descendants Fixed-CP Weighted-CP

100 1.6 1.6 (0%) 1.6 (0%) 1.6 (0%) 1.6 (0%)

200 6.1 6.1 (0%) 5.9 (-4%) 6.5 (7%) 6.1 (0%)

300 10.0 10.1 (1%) 10.1 (1%) 10.6 (6%) 10.6 (6%)

400 13.7 13.7 (0%) 14.3 (4%) 14.5 (6%) 14.1 (3%)

500 16.9 17.0 (1%) 17.4 (3%) 18.1 (7%) 17.7 (5%)

1000 28.6 28.6 (0%) 28.7 (0%) 29.7 (4%) 29.1 (2%)

1500 35.9 35.8 (0%) 35.3 (-2%) 35.8 (0%) 35.2 (-2%)

2000 40.5 40.7 (0%) 39.7 (-2%) 39.6 (-2%) 40.2 (-1%)

2500 43.3 43.9 (1%) 42.6 (-2%) 42.5 (-2%) 43.5 (0%)

5000 53.4 53.5 (0%) 51.8 (-3%) 52.4 (-2%) 54.4 (2%)

10000 61.5 61.6 (0%) 59.1 (-4%) 60.4 (-2%) 61.9 (1%)

20000 64.8 64.3 (-1%) 63.7 (-2%) 65.0 (0%) 65.5 (1%)

Table 6.3: Comparing factor storage with maximum observed memory used for delayed updates (fox, 8

threads, kilobytes).

n Factor Memory Simple Max Child Max Descendants Fixed-CP Weighted-CP

1000 3,911 864 720 1,775 2,028 3,211

2500 24,424 3,281 4,374 6,926 6,561 6,561

5000 97,676 9,032 9,935 12,644 11,741 12,644

10000 390,665 14,306 18,207 29,912 16,907 23,409

Table 6.2 shows the average results for the complete factorization of a random diagonally dominant

matrix. We believe the averages to be reliable to within 0.2 Glop/s. They were obtained by running

factorizations until we had accumulated at least 1 second worth of computation and then repeating this

until the average was determined. However, we note that performance for methods Simple and Max Child

had a much higher variation that other methods. We believe this to be due to the lack of tie breaking for

update tasks and the consequent highly random execution sequence.

While it is disappointing that there is little difference between results, Weighted-CP seems to give the

best results on large problems; however Max Child and Fixed-CP do better in the range n = 1500 to

n = 2500. Following profiling for problems in this range we have determined that Max Child has many

fewer updates that are delayed, resulting in less work than for Weighted-CP. This seems to be caused

by a more random ordering of updates for Max Child — Weighted-CP gives all updates to the same

block the same schedule, resulting in more collisions causing delayed updates. Fixed-CP does better than

Weighted-CP on smaller problems, for which we offer the hypothesis that our choice of weighting is poor

for small block sizes, where much of the time goes into the memory load rather than the floating-point

operations. We note however that even on these small problems we saw evidence of Max Child causing

task starvation mid-factorization due to a poor prioritisation of tasks. For larger problems the design

assumptions of Weighted-CP are more accurate and the time spent in application of updates becomes

negligible compared to other operations.

Table 6.3 shows the observed worst case memory usage for storage of our delayed updates. It confirms

that in practice this does not become excessive. If we wished to minimise it, then we should choose either

the Simple or Max Child schemes. As we are primarily concerned with speed for large matrices rather

than memory usage, the comparisons in the remainder of this paper shall use the Weighted-CP schedule.
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Table 6.4: Scalability of HSL MP54 on a range of problem sizes using fox.

1 thread 2 threads 4 threads 8 threads
n

Gflop/s Gflop/s Speedup Gflop/s Speedup Gflop/s Speedup

500 5.6 8.6 1.5 13.4 2.4 17.7 3.2

1000 6.8 11.3 1.7 20.1 3.0 29.1 4.3

2500 7.6 14.5 1.9 26.9 3.5 43.5 5.7

5000 8.3 15.2 1.8 31.1 3.7 54.4 6.6

10000 8.6 17.1 2.0 33.6 3.9 61.9 7.2

20000 8.8 17.7 2.0 35.1 4.0 65.5 7.4

Table 6.5: Scalability of HSL MP54 on a range of problem sizes using HPCx.

1 thread 2 threads 4 threads 8 threads 16 threads
n

Gflop/s Gflop/s Speedup Gflop/s Speedup Gflop/s Speedup Gflop/s Speedup

500 3.2 5.4 1.7 8.5 2.7 11.3 3.5 11.8 3.7

1000 4.0 7.2 1.8 12.9 3.2 19.6 4.9 25.7 6.4

2500 4.6 8.8 1.9 16.2 3.5 28.0 6.1 46.2 10.0

5000 4.8 9.4 2.0 18.1 3.8 32.0 6.7 53.4 11.1

10000 4.9 9.8 2.0 19.3 3.9 36.7 7.5 65.5 13.4

20000 4.9 -1 - - 1 - 39.3 8.0 69.9 14.2
1 These results are not available due to time budget constraints

6.2 Scalability

Tables 6.4 and 6.5 demonstrate the scalability of HSL MP54. We observe good scaling on large problems,

however smaller problems do not scale quite so well. This is because the efficiency of the level 3 BLAS

routines decreases with block size. In order to keep all threads fed for small problems on many threads

a significantly smaller block size must be used than on a single thread, giving a lower efficiency than we

would otherwise expect.

6.3 Block sizes

Table 6.6 shows the block sizes used on fox to achieve the results shown previously for the Weighted-CP

schedule. We found that optimal block sizes are always multiples of 8, which we observe is the number of

double precision numbers per cache line — this helps avoid false sharing.

The optimal block size seemed not to vary between the different schedulings, and was not very sensitive

as long as nb was a multiple of 8, as is shown by Figure 6.3 for the case n = 2000.

Table 6.7 shows how the optimal nb varies with the number of threads in use. Based on these results

we recommend that the user aims to have nblk between 15 and 20 to estimate a near optimal value of nb

for large problems.

6.4 Comparison with other codes

Figure 6.4 compares the performance of our code with the following codes:

HSL MA54 Left looking Cholesky factorization code with fork-join parallelism of loops (version 1.3.0)

HSL MP54 The DAG-based code described in this paper

MKL dpotrf Intel Math Kernel Library 10.0.1.014 full storage Cholesky factorization.

MKL dpptrf Intel Math Kernel Library 10.0.1.014 packed storage Cholesky factorization.
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Table 6.6: Optimal block sizes used for Weighted-CP using 8 threads on fox.

n nb nblk

100 100 1

200 32 7

300 40 8

400 40 10

500 56 9

1000 104 10

1500 120 13

2000 184 12

2500 216 15

5000 340 15

10000 408 25

20000 968 21

Figure 6.3: Performance varying with nb for n = 2000 on 8 threads on fox.
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Table 6.7: Optimal block sizes for varying number of threads and n, with nblk shown in brackets, using

fox.
n 1 thread 2 threads 4 threads 8 threads

500 200 (3) 104 (5) 72 (7) 56 (9)

1000 200 (5) 156 (7) 128 (8) 104 (10)

2500 400 (7) 340 (8) 264 (10) 216 (12)

5000 400 (13) 480 (11) 400 (13) 340 (15)

10000 400 (25) 480 (21) 400 (25) 408 (25)
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Figure 6.4: Performance varying with size of matrix n for complete factorizations, using 8 threads on fox.
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Clearly for matrices that are not small HSL MP54 offers the best performance on 8 threads. For small

matrices, for example n = 100, it is faster to factorize the matrix in serial due to caching issues and

communication overheads.

Figure 6.5 shows a similar comparison on HPCx. Though we have not performed any tuning for this

architecture beyond selecting good block sizes (which do not substantially differ from those on fox) we

still get good performance, though the comparison with the vendor implementations of dpptrf and dpotrf

are not quite so favourable except on small matrices.

7 Conclusions

HSL MP54 is a Cholesky code that performs well on multicore machines, and should prove to be a good

kernel for sparse multifrontal factorizations. However, care must be taken with small front sizes, possibly

using a different factorization kernel, or exploiting parallelism at a higher level.

We have shown that the effect of different scheduling schemes in DAG-based Cholesky factorizations

makes only a small difference, at most 7%. However, if the extra performance is considered worthwhile,

a scheme that takes the critical path should be used. Further, the comparative times for different tasks

must be taken into account when determining the critical path.

Future improvements to the scheduling may aim to reduce the number of threads attempting to update

a single target block at once during update tasks, and may focus more on being cache efficient. The meaning

of cache efficient may however change if all or many cores are sharing the same on-chip cache at some

level.

It may also be of interest to replace our task handling mechanism with of OpenMP 3.0 tasks or Intel

Thread Building Blocks.
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Figure 6.5: Performance varying with size of matrix n for complete factorizations, 16 threads on HPCx.
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8 Code availability

The code discussed in this paper has been developed for inclusion in the mathematical software library

HSL. All use of HSL requires a licence. Individual HSL packages (together with their dependencies and

accompanying documentation) are available without charge to individual academic users for their personal

(non-commercial) research and for teaching; licences for other uses involve a fee. Details of the packages

and how to obtain a licence plus conditions of use are available at www.cse.clrc.ac.uk/nag/hsl/.
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