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About This Manual

About

The letters LAIPE(TM) stands for "Link And In Parallel Execute". LAIPE is a symbol for
high performance computing, and has a collection of subroutines for numerical analyses. All the
functions in LAIPE are programmed in explicit parallelism, not optimized by auto-parallelizer.
Some LAIPE solvers can yield almost perfect speedup, i.e., 1.99X on 2 processors. Link LAIPE
to your programs, and then your applications not only can run on uniprocessor computer but also
can speed up on multiprocessors. LAIPE provides powerful subroutines for users to efficiently
take advantage of multiprocessors.

This manual covers parallel direct solvers, i.e., Cholesky decomposition, skyline solver,
Crout decomposition, multiple entry solvers, and other popular and useful techniques. Solvers for
dense and sparse systems are included. More than 90% of scientific and engineering problems
are formulated into a system of equations. Solution of system equations is required in many
scientific and engineering computing. LAIPE has the most useful and highly efficient solvers for
scientific and engineering computing.

LAIPE is written in MTASK(TM) that is a parallel programming language. When building
your application that links with LAIPE direct solvers, a copy of MTASK is necessary.

Assumptions About the Reader

This manual assumes that readers have knowledge on system equations. This manual
focuses on how to apply LAIPE solvers, but does not discuss mathematical equations and parallel
algorithms. This manual also assumes that users have experience writing, executing, and
debugging Fortran, and assumes that user’s computer is capable of parallel processing.

Overview of This Manual

This manual is organized as follows:

Chapter 1  Introduction. This chapter introduces terms and essential concepts that user will
need to be familiar with before applying LAIPE solvers.

Chapter 2  Constant-Bandwidth, Symmetric, and Positive Definite Systems. This chapter
describes calling syntax of LAIPE subroutines for a system in the category, with
the definition of profile, data storage scheme, and example.

Chapter 3  Variable-Bandwidth, Symmetric, and Positive Definite Systems. This chapter
describes calling syntax of LAIPE subroutines for a system in the category, with
the definition of profile, data storage scheme, and example.

Chapter 4 Dense, Symmetric, and Positive Definite Systems. This chapter describes calling
syntax of LAIPE subroutines for a system in the category, with the definition of
profile, data storage scheme, and example.



Chapter 5

Chapter 6

Chapter 7

Chapter 8

Chapter 9

Chapter 10

Chapter 11

Chapter 12

Chapter 13

Chapter 14

Chapter 15

Constant-Bandwidth and Symmetric Systems. This chapter describes calling
syntax of LAIPE subroutines for a system in the category, with the definition of
profile, data storage scheme, and example.

Variable-Bandwidth and Symmetric Systems. This chapter describes calling
syntax of LAIPE subroutines for a system in the category, with the definition of
profile, data storage scheme, and example.

Dense and Symmetric Systems. This chapter describes calling syntax of LAIPE
subroutines for a system in the category, with the definition of profile, data storage
scheme, and example.

Constant-Bandwidth and Asymmetric Systems. This chapter describes calling
syntax of LAIPE subroutines for a system in the category, with the definition of
profile, data storage scheme, and example.

Variable-Bandwidth and Asymmetric Systems. This chapter describes calling
syntax of LAIPE subroutines for a system in the category, with the definition of
profile, data storage scheme, and example.

Dense and Asymmetric systems. This chapter describes calling syntax of LAIPE
subroutines for a system in the category, with the definition of profile, data storage
scheme, and example.

Constant-Bandwidth and Asymmetric Solvers with Partial Pivoting. This
chapter describes calling syntax of LAIPE subroutines for a system in the category,
with the definition of profile, data storage scheme, and example.

Constant-Bandwidth, Symmetric, and Positive Definite Solvers with Partial
Pivoting. This chapter describes calling syntax of LAIPE subroutines for a system
in the category, with the definition of profile, data storage scheme, and example.

Constant-Bandwidth and Symmetric Solvers with Partial Pivoting. This
chapter describes calling syntax of LAIPE subroutines for a system in the category,
with the definition of profile, data storage scheme, and example.

Dense Solvers with Partial Pivoting. This chapter describes calling syntax of
LAIPE subroutines for a system in the category, with the definition of profile, data
storage scheme, and example.

Dense Solvers with full pivoting. This chapter describes calling syntax of LAIPE
subroutines for a system in the category, with the definition of profile, data storage
scheme, and example.

Appendix A Auxiliary Subroutine for Releasing System Resource

Appendix B Auxiliary Subroutines for Task Manipulations

vi



Chapter 1. Introduction

Parallel computing especially benefits to large-scaled problems, that distributes computing
loads among employed processors and speeds up an individual application. It is an important
technique for scientific and engineering computing. The executing speed of parallel computing is
superior to sequential computing that executes instructions in order. Usually, more processors
may produce better improvement.

LAIPE has high performance parallel solvers. On uniprocessor environments, LAIPE run as
usual. When multiprocessors present, LAIPE may split itself to fit the multiprocessors. Users just
link LAIPE to their applications. It is unnecessary for users to distribute computing instructions
onto employ multiprocessors. LAIPE is a package for both small and large-scaled problems. The
present release has solvers in the following categories:

1. sparse system (of constant bandwidth, and variable bandwidth)
dense system
symmetric system
asymmetric system
positive definite system
indefinite system
solution with partial pivoting
solution with full pivoting.

XN R WD

The following introduces essential terms and concept for applying LAIPE solvers.

1.1 Solution of System Equations

A system of linear equations may be written in the form

[A]{X}={B} (1.1)

where the left side matrix [A] is square and of order (NxN), and {B} is a given vector, and the
vector {X} is the solution to be determined. Not every system in equation (1.1) is solvable. If the
matrix [A] is singular, i.e., matrix [A] has zero eigenvalue or the determinant of [A] is zero, the
solution {X} is not unique or even does not exist. This manual does not deal with singular
systems, and provides solution to solvable systems.

In direct methods, solution procedure consists of two parts, decomposition and substitution.
For example, the left side matrix [A] is decomposed into the product of [L][U] where matrix [L]
is a lower triangular matrix and matrix [U] is an upper triangular matrix. Then, equation (1.1) is
rewritten as

[LIIU{X}={B}, (1.2)
and is rewritten into the following

[LI{Y}={B} (1.3)
[UKX}={Y} (1.4)



Equation (1.3) solves {Y}. Since [L] is the lower triangular matrix, equation (1.3) is called
forward substitution. Equation (1.4) solves {X}, and is called backward substitution. The
solution of equation (1.1) is obtained by decomposition, forward and backward substitutions. The
solution costs depend on the nature of matrix [A], for example, sparsity or symmetry. Each type
of matrix [A] will be briefly introduced in the following.

1.2 Symmetric and Asymmetric Systems

A symmetric matrix [A] means that AijzAji for any i and j; otherwise matrix [A] is

asymmetric. Solution of symmetric systems is cheaper than asymmetric systems. Most
engineering and scientific applications can be approximated into a symmetric system. Symmetric
systems only consider a triangular part of matrix [A]; While asymmetric systems must deal with
the entire matrix.

1.3 Sparse and Dense Systems

In the situation that [A] has many zero coefficients, the row or column can be reordered
such that the non-zero coefficients are clustered along the diagonal of [A]. The non-zero fill-ins
generate a sparsity. This makes sparse matrix different from dense matrix. The sparse matrix can
be classified into constant or variable bandwidth. The solution costs on sparse matrix may be far
less than a corresponding dense system. If a system is sparse in nature, it is always better to apply
sparse solvers.

1.4 Profile

Profile is a contiguous space to save a matrix. For a dense matrix that is the simplest
example, the profile is the entire matrix size, i.e., an array of (NxN) coefficients. Sparse matrix
has a profile less than (NxN) coefficients. A data storage scheme is associated with a profile. For
an example of dense matrix, the profile is declared as

REAL (4) :: AN,N)

The coefficient Aij of matrix [A] is written as A(L,J) in a computer program. Profile must be in

a contiguous space. Some Fortran compilers do not allocate 2-dimensional array in a contiguous
space. That may create problems for LAIPE. It is always safe to initialize [A], in the main
program, as a one-dimensional array, i.e., REAL (4) :: A(N*N), and then pass the reference of
[A] to LAIPE solvers.

A sparse matrix has a profile smaller than the dense matrix, but the data storage scheme is
more complex than dense matrix. The non-zero fill-ins are stored one by one in a contiguous
space. For example,
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1.5 Definiteness

Definiteness is a mathematical condition. If all the eigenvalues are positive, the system is
positive definite; 1f all the eigenvalues are negative, the system is negative definite; Others are
indefinite. A solution procedure can be simplified if the system is definite. LAIPE has parallel
solvers for positive definite systems. If a system is proved to be positive definite, it is better to
apply a positive-definite solver.

1.6 Pivoting

Pivoting is a well known technique for improving accuracy. The idea of pivoting is well
known. There are two kinds of pivoting; partial pivoting that finds the pivoting from the
remaining elements in a column, and full pivoting that finds the pivoting element from the
remaining columns and rows.

Floating variables always suffer from round-off error. Round-off error is a common problem
in scientific and engineering computing. The problem can be enhanced if a number subtracts
from another closed number. That may lose lots of significant digits. For example,

3.14160 - 3.14159 = 0.00001
The result does not have a significant digit, even both 3.14160 and 3.14159 have 5 significant
digits. Any computations referring to the result become no significant digits, which is equivalent
to no control of accuracy. Pivoting may keep significant digits as many as possible.
LAIPE has parallel solvers with pivoting. Solvers with pivoting, no doubt, take more

execution time, and may lose the advantage of sparsity and symmetry. Pivoting is also a
disadvantage to parallel processing.

1.7 Name Convention of LAIPE solvers

LAIPE has solvers in the following categories:
1. symmetric /asymmetric matrix
2. dense / sparse matrix
3. positive definite / indefinite system
4. single, double, and quad precision floating variables

LAIPE solvers can be identified by 5 elements. The name convention is as:



(Function) #$% *

Each element is introduced as follows.

§ Element 1

The symbol (Function) indicates the main purpose of the subroutine. That may be one of the

following:
Decompose
Substitute
Solution
ppDecompose
ppSubstitute
ppSolution
fpDecompose
fpSubstitute
fpSolution
meSolution

where the prefix "pp" indicates a procedure with partial pivoting, and the prefix "fp" indicates a
procedure with full pivoting, and the prefix "me" indicates a multiple entry direct solver. For
example, “fpDecompose” is a procedure to decompose a matrix with full pivoting.

Multiple entry direct solvers have a higher degree of parallelism, but with a higher
complexity. Multiple-entry direct solvers are most well suitable for systems with a small
bandwidth, and are usually dealt with in a constant-bandwidth system, such as CSP, CSG, and
CAG

§ Element 2

The symbol # is a single character. That indicates the type of sparsity, and may be one of
the following:

C : sparse matrix with constant bandwidth

V : sparse matrix with variable bandwidth
D : dense matrix

§ Element 3

The symbol §$ is a single character, and is a flag to indicate if matrix is symmetric or
asymmetric. The flag is one of the following:

S : symmetric matrix
A : asymmetric matrix

§ Element 4



The symbol % is a single character, and is a flag to indicate if the matrix is positive definite
or indefinite. The flag is one of the following:

P : positive definite system
G : general system without a consideration of definiteness

§ Element 5

The symbol * is for the kind of real or complex arguments. Argument is a variable or

parameter, passed to LAIPE solvers. All the real or complex arguments must be in the type
specified by the symbol. The symbol is one of the following:

4 : single precision real variables (4 bytes)

8 : double precision real variables (8 bytes)

10 : extended precision real variables (10 bytes)

16 : quad precision real variables (16 bytes)

Z4 : single precision complex variables (8 bytes)

Z8 : double precision complex variables (16 bytes)
710 : extended precision complex variables (10 bytes)
716 : quad precision complex variables (32 bytes)

Some Fortran compiler does not support quad precision variables. LAIPE subroutines are
identified by those five elements. For the example of "Decompose VSG 8", it is a subroutine for
decomposing a variable-bandwidth, symmetric, and indefinite matrix. The REAL variables are in
double precision.

The arguments passed to LAIPE functions are suffixed a " i", " o", " i0o", or " x". The
suffix " i" means the argument is an input. "_o" means an output. " _io" means that the argument
inputs the data and returns the result. The suffix " x" means that the argument provides a
working space for temporary uses. For example,

Decompose CSP_4(A io, N_i, LowerBandwidth i, NoGood 0)

The arguments "A_io", "N _i", and "LowerBandwidth i" have to be defined before calling the
function, and the result can be obtained from arguments "A_io" and "NoGood o".

1.8 Data Storage Schemes

A data storage scheme is associated with profile, and has two specifications. The first one is
to declare a dimension of profile, and the second one replaces the column index of coefficient of
matrix with an address reference label. For example, a skyline matrix [A] is declared in a Fortran
subroutine as

REAL (4) :: A(L,1)

And, the column index j of coefficient Aij is programmed in a Fortran program as A(I,Label(J))

where Label(J) is the address reference label for column J.



Data storage scheme is applied to dummy arguments, for example in a subroutine, but not in
the main program. The main program distributes a sufficient memory space for a profile, and
then the main program passes the memory space to subroutine where data storage scheme is
applied.



Chapter 2. Constant-Bandwidth, Symmetric,
and
Positive Definite Systems

2.1 Purpose

This chapter has subroutines for the solution of [A]{X}={B} where the left side matrix [A]
is of constant bandwidth, symmetric, and positive definite. The non-zero fill-ins in the lower
triangular part of matrix [A] have a shape, for example, as:

Three types of subroutine are introduced in the chapter, which perform the following functions:
1. Decompose [A] into the product of [L | L]T where matrix [L] is the lower triangular

matrix.
2. Perform forward and backward substitutions.
3. Solve [A]{X}={B} in a single call.

Decomposition and substitution must be called in order, and work together as a pair. No pivoting
is applied to the functions introduced in this chapter. Subroutines are as:

Decompose CSP 4
Decompose CSP 8
Decompose CSP_10
Decompose CSP_16
Decompose CSP 74
Decompose CSP_Z8
Decompose CSP_Z10
Decompose CSP_Z16

Substitute CSP_4
Substitute CSP_8§
Substitute CSP_10
Substitute CSP_16
Substitute CSP_Z4
Substitute CSP_Z8
Substitute CSP_Z10
Substitute CSP_Z16



Solution_CSP_4
Solution CSP_8
Solution_CSP_10
Solution CSP_16
Solution CSP_Z4
Solution CSP_Z8
Solution CSP_Z10
Solution_ CSP_Z16

meSolution CSP 4
meSolution CSP_8
meSolution CSP_10
meSolution CSP_16
meSolution CSP 74
meSolution CSP_Z8
meSolution CSP_Z10
meSolution CSP_Z16

The subroutines with a prefix "me", i.e., meSolution CSP_4, are multiple-entry direct solvers
that are most well suitable for systems with a small bandwidth.

2.2 Fortran Syntax for Subroutine Decompose

The following subroutines decompose a matrix [ A] into [ A] :[ L][ L]T :

Decompose CSP 4 (A io, N_i, LowerBandwidth i, NoGood 0)
Decompose CSP_8 (A _io, N_i, LowerBandwidth_i, NoGood_o)
Decompose CSP 10 (A _io, N _i, LowerBandwidth i, NoGood o)
Decompose CSP_16(A_io, N_i, LowerBandwidth_i, NoGood_0)
Decompose CSP_Z4 (A _io, N i, LowerBandwidth i, NoGood o)
Decompose CSP_Z8 (A_io, N i, LowerBandwidth i, NoGood 0)
Decompose CSP 710 (A _io, N _i, LowerBandwidth i, NoGood o)
Decompose CSP_Z16 (A _io, N_i, LowerBandwidth i, NoGood 0)

where

1. The argument A_io, array whose kind must be consistent with subroutine name convention, is
the profile of matrix [A], that inputs the original matrix and returns the result if the variable
NoGood o is false. For the definition of profile, please see section 2.6.

2. The argument N i, an INTEGER(4) variable, is the order of matrix [A].

3. The argument LowerBandwidth_i, an INTEGER(4) variable, is the lower bandwidth of matrix
[A]. The lower bandwidth is the maximal number of non-zero fill-ins below the diagonal in a
column.

4. The argument NoGood o, a LOGICAL(4) variable, is a flag that indicates if the input matrix
[A] is suitable for the subroutine. If NoGood o=.True., the input matrix [A] is not positive
definite and there is no output from the subroutine; otherwise the profile A io returns the
decomposed matrix [L]. For the situation where NoGood o=.True., please see section 2.8.

2.3 Fortran Syntax for Subroutine Substitute




The following subroutines perform forward and backward substitutions:

Substitute CSP_4 (A_i, N _i, LowerBandwidth i, X i0)
Substitute CSP_8 (A_i, N_i, LowerBandwidth i, X io)
Substitute CSP_10 (A _i, N_i, LowerBandwidth i, X io)
Substitute CSP_16 (A _i, N_i, LowerBandwidth i, X io)
Substitute CSP_Z4 (A i, N_i, LowerBandwidth i, X io)
Substitute CSP_Z8 (A_i, N_i, LowerBandwidth i, X io)
Substitute CSP_Z10 (A_i, N_i, LowerBandwidth_i, X io)
Substitute CSP_Z16 (A_i, N_i, LowerBandwidth_i, X io)

where

1. The argument A_1i, array whose kind must be consistent with subroutine name convention, is
the profile of matrix [A], that inputs the result from decomposition.

2. The argument N_i, an INTEGER(4) variable, is the order of matrix [A].

3. The argument LowerBandwidth i, an INTEGER(4) variable, is the lower bandwidth of
matrix [A]. The lower bandwidth is the maximal number of non-zero fill-ins below the
diagonal in a column.

4. The argument X io, array whose kind must be consistent with subroutine name convention,

inputs the right side vector, and returns the solution.

2.4 Fortran Syntax for Subroutine Solution

The following subroutines first decompose matrix [A] into the product of [ ][ L]T , and

then perform forward and backward substitutions. Solve the system [A]{X}={B} in a single call.
The syntax is as follows:

Solution CSP_4 (A _io, N_i, LowerBandwidth i, X io, NoGood o)
Solution CSP_8 (A _io, N_i, LowerBandwidth i, X io, NoGood o)
Solution CSP_10 (A_io, N_i, LowerBandwidth i, X io, NoGood o)
Solution CSP_16 (A _io, N _i, LowerBandwidth i, X io, NoGood 0)
Solution CSP_Z4 (A _io, N i, LowerBandwidth i, X io, NoGood o)
Solution CSP_Z8 (A_io, N_i, LowerBandwidth_i, X io, NoGood o)
Solution CSP_Z10 (A _io, N_i, LowerBandwidth i, X io, NoGood o)
Solution CSP_Z16 (A _io, N _i, LowerBandwidth i, X io, NoGood o)

where

1. The argument A _io, array whose kind must be consistent with subroutine name convention,
is the profile of matrix [A], that inputs the original matrix and returns the decomposed result
if the variable NoGood o is false. For the definition of profile, please see section 2.6.

2. The argument N_i, an INTEGER(4) variable, is the order of matrix [A].

3. The argument LowerBandwidth i, an INTEGER(4) variable, is the lower bandwidth of
matrix [A]. The lower bandwidth is the maximal number of non-zero fill-ins below the
diagonal in a column.

4. The argument X io, array whose kind must be consistent with subroutine name convention,
inputs the right side vector, and returns the solution if NoGood o is false.

5. The argument NoGood o, a LOGICAL(4) variable, is a flag that indicates if the input matrix

[A] is suitable for the subroutine. If NoGood o=.True., the input matrix [A] is not positive
definite and there is no output from the subroutine; otherwise the profile A io returns the



decomposed matrix [L] and vector X io returns the solution. For the situation where
NoGood o0=.True., please see section 2.8.

2.5 Fortran Syntax for meSolution

The following subroutines solve the system [A][X]=[B] by multiple-entry method, where

[X] and [B] may be a matrix with multiple vectors, i.e., [ X]=[{ Xl 1+ X2 } ...] and [B]=[{ B1 }

{

BZ } ...]- Syntax is as follows:

meSolution_ CSP_4(A _io, N_i,LowerBandwidth i, X io, Nset i, &
WorkingSpace x, NoGood 0)
meSolution_CSP_8(A _io, N_i,LowerBandwidth i, X io, Nset i, &
WorkingSpace x, NoGood o)
meSolution CSP_10(A_io, N_i,LowerBandwidth i, X io, Nset i,
WorkingSpace x, NoGood 0)
meSolution CSP_16(A_io, N i,LowerBandwidth i, X io, Nset i,
WorkingSpace x, NoGood o)
meSolution CSP_Z4(A_io, N_i,LowerBandwidth i, X io, Nset i,
WorkingSpace x, NoGood o)
meSolution CSP_Z8(A_io, N_i,LowerBandwidth i, X io, Nset i,
WorkingSpace x, NoGood o)
meSolution CSP_Z10(A_io, N_i,LowerBandwidth i, X io, Nset i, &
WorkingSpace x, NoGood o)
meSolution_ CSP_Z16(A_io, N_i,LowerBandwidth i, X io, Nset i, &
WorkingSpace x, NoGood o)

S T S

where

1.

2.6 Profile

The argument A _io, array whose kind must be consistent with subroutine name convention, is
the profile of matrix [A] that inputs the original matrix. After returning from this subroutine,
the content in the profile is destroyed no matter if the calling request is successful or not. For
the definition of profile, please see section 2.6.

The argument N_i, an INTEGER(4) variable, is the order of matrix [A].

. The argument LowerBandwidth_i, an INTEGER(4) variable, is the lower bandwidth of matrix

[A]. The lower bandwidth is the maximal number of non-zero fill-ins below the diagonal in a
column. This subroutine is more efficient if the lower bandwidth is small.

. The argument X io, array whose kind must be consistent with subroutine name convention,

inputs the right side vector(s), and returns the solution if NoGood o is false.

The argument Nset i, an INTEGER(4) variable, is the number of right side vectors.

The argument WorkingSpace x, array whose kind must be consistent with subroutine name
convention and providing a space of (2*N_i*LowerBandwidth i) elements, is a working
space.

The argument NoGood o, a LOGICAL(4) variable, is a flag that indicates if the input matrix
[A] is suitable for the subroutine. If NoGood o=.True., the input matrix [A] is not positive
definite and there is no output from the subroutine; otherwise the vector X io returns the
solution. For the situation where NoGood _o=.True., please see section 2.8.
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The profile for a constant-bandwidth, symmetric, and positive definite matrix is as:

W w SV,
* * *
* * * * |:2.1:|

where the symbol * represents non-zero fill-ins and the symbol & indicates an extra memory
space whose content is never used. Total length of profile is determined as

profile size = (N-1) * LowerBandwidth + N (2.2)

where N is the matrix order, and LowerBandwidth is the lower bandwidth.

2.7 Data Storage Scheme

Data storage scheme must be declared in a Fortran program, for example:

INTEGER (4) :: LowerBandwidth
REAL (4) :: A(LowerBandwidth,1)

where variable A here is a single precision profile. Other kinds of variable, profile must be
properly declared. Then, the coefficient Aij in the lower triangular part of matrix [A] is

programmed in a Fortran program as A(LJ).

2.8 Failure of Calling Request

If a calling request fails, solving procedure meets a diagonal coefficient that is very small
and is negligible compared to unity.

The subroutines introduced in this chapter deal with positive definite systems. Since a
symmetric solver does not consider pivoting, failure of request does not mean the input matrix is
absolutely not positive definite. A pivoting may continue execution. However, pivoting may
destroy the symmetry. If you cannot get the solution by the subroutines introduced in this
chapter, try the solvers with partial pivoting, i.e., ppDecompose_CSP 4 discussed in chapter 12.
Pivoting procedure always takes more time, and is less efficient in parallel processing.

2.9 Fortran Example

11



For a given system [A]{X}={B}, the left side matrix [A] and the right side vector {B} are
defined as follows:

1 21
4 25 sym. 141
z 29 88 z
o9 34 89 and =
3 23 45 333
11 7 2z 1
3z 9 3

in which the order N=7 and the lower bandwidth, denoted by LowerBandwidth, is 2. A Fortran
program for decomposition and substitution is as follows. Subroutines “Input” and “Output”
have example of data storage scheme. Subroutine “Decompose CSP_4” decomposes matrix [A],
and subroutine “Substitute CSP_4” performs forward and backward substitutions.

! #** Example program ***
! define variables where the length of A is determined by equation (2.2)
Integer (4), PARAMETER :: N=7
Integer (4), PARAMETER :: LowerBandwidth=2
REAL (4) :: A((N-1)*LowerBandwidth+N), X(N)
LOGICAL (4) :: NoGood
DATA X/21.0,141.0,2.0,9.0,333.0,1.0,3.0/
! input the lower triangular part of [A]
CALL Input(A,LowerBandwidth)
! decompose in parallel
CALL Decompose CSP_4(A,N,LowerBandwidth, NoGood)
! stop if NoGood=.True.
IF(NoGood) STOP 'Cannot be decomposed'
! perform substitutions in parallel
CALL Substitute CSP_4(A,N,LowerBandwidth,sX)
! output decomposed matrix
CALL Output(A,N,LowerBandwidth)
! output the solution
Write(*,'(" Solution is as:")")

Write(*,*) X

12



! laipe done
call laipeDone

STOP
END

SUBROUTINE Input(A,LowerBandwidth)
routine to demonstrate an application of data storage scheme
(A)FORTRAN CALL: CALL Input(A,LowerBandwidth)
1.A: <R4> profile of matrix [A], dimension(*)

2.LowerBandwidth: <I4> lower bandwidth

dummy arguments

INTEGER (4) :: LowerBandwidth
REAL (4) :: A(LowerBandwidth,1)

! input

A(1,D= 1.0
AQ2,1)=4.0
AG,1)=2.0
A(2,2)=25.0
A(3,2)=29.0
A(4,2)=9.0
A(3,3)=88.0
A(4,3)=34.0
A(5,3)=3.0
A(4,4)=89.0
A(5,4)=23.0
A(6,4)=11.0
A(5,5)=45.0
A(6,5)=17.0
A(7,5)=3.0
A(6,6)=22.0
A(7,6)= 2.0
A(7,7)=9.0

RETURN
END

SUBROUTINE Output(A,N,LowerBandwidth)
!
!
! routine to output the decomposed matrix by data storage scheme
! (A)FORTRAN CALL: CALL Output(A,N,LowerBandwidth)

13



1.A: <R4> profile of matrix [A], dimension(*)
2.N: <I4> order of matrix [A]
3.LowerBandwidth: <I4> lower bandwidth

dummy arguments

INTEGER (4) :: N,LowerBandwidth
REAL (4) :: A(LowerBandwidth,1)

! local variables
INTEGER (4) :: Column,Row
! output the coefficients on non-zero fill-ins

WRITE(*,'(" Row Column Coefficient")')
DO Column=1,N
DO Row=Column, MINO(Column+LowerBandwidth,N)
WRITE(*,'(14,16,F9.3)") Row,Column, A(Row,Column)
END DO
END DO

RETURN
END

14



Chapter 3. Variable-Bandwidth, Symmetric, and
Positive Definite Systems

3.1 Purpose

This chapter has subroutines for the solution of [A]{X}={B} where the left side matrix [A]
has a variable bandwidth, and is symmetric and positive definite. The non-zero fill-ins in the
upper triangular part of matrix [A] have a shape, for example, as:

* %
* % *
% &
L *
Sy, * % %
%
*

which looks like a skyline in a city, and is sometimes called skyline solver. Three types of
subroutine are introduced in the chapter, which have the following functions:

1. Decompose [A] into the product of [{J ]T [U] where matrix [U] is the upper triangular

matrix.
2. Perform forward and backward substitutions.
. Solve [A]{X}={B} in a single call.

W

Decomposition and substitution must be called in order, and work together as a pair. No
pivoting is applied to the functions introduced in this chapter. This chapter has the following
subroutines:

Decompose VSP_4
Decompose VSP_8
Decompose VSP 10
Decompose VSP 16
Decompose VSP_ 74
Decompose VSP 78
Decompose VSP_Z10
Decompose VSP _Z16

Substitute VSP 4
Substitute VSP_8
Substitute VSP_10
Substitute VSP_16
Substitute VSP_Z4
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Substitute VSP_Z8
Substitute VSP_Z10
Substitute VSP_Z16

Solution VSP 4
Solution_VSP_8
Solution_VSP 10
Solution_VSP_16
Solution_VSP_ 74
Solution_VSP_Z8
Solution_VSP_Z10
Solution_VSP_Z16

3.2 Fortran Syntax for Subroutine Decompose

The following subroutines decompose [A] into [A]=[U ]T [U] - Syntax is as follows:

Decompose VSP 4(A _io, N i, Label i, NoGood 0)
Decompose VSP 8(A _io, N i, Label i, NoGood 0)
Decompose VSP_10(A_io, N i, Label i, NoGood o)
Decompose VSP_16(A _io, N i, Label i, NoGood o)
Decompose VSP_Z4(A io, N i, Label i, NoGood o)
Decompose VSP_Z8(A io, N i, Label i, NoGood o)
Decompose VSP_Z10(A _io, N_i, Label i, NoGood o)
Decompose VSP_Z16(A_io, N_i, Label i, NoGood o)

where

1. The argument A _io, array whose kind must be consistent with subroutine name convention,
is the profile of matrix [A] that inputs the original matrix and returns the result if the variable
NoGood o is false. For the definition of profile, please see section 3.5.

2. The argument N_i, an INTEGER(4) variable, is the order of matrix [A].

3. The argument Label i, an INTEGER(4) array, is the address reference label. For the
definition of address reference label, please see section 3.6.

4. The argument NoGood o, a LOGICAL(4) variable, is a flag that indicates if the input matrix
[A] is suitable for the subroutine. If NoGood o=.True., the input matrix [A] cannot be
decomposed by the subroutine and there is no output from the subroutine; otherwise the
profile A_io returns the decomposed matrix [U]. For the situation where NoGood_o=.True.,
please see section 3.7.

3.3 Fortran Syntax for Subroutine Substitute

The following subroutines perform forward and backward substitutions. Syntax is as
follows:

Substitute VSP_4( A _i, N _i, Label i, X io)
Substitute VSP_8( A_i, N i, Label i, X io0)
Substitute VSP_10( A i, N i, Label i, X io)
Substitute VSP_16( A i, N i, Label i, X io)
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Substitute VSP_Z4( A i, N_i, Label i, X io)
Substitute VSP_Z8( A i, N_i, Label i, X io)
Substitute VSP_Z10( A_i, N_i, Label i, X io)
Substitute VSP_Z16( A_i, N _i, Label i, X io)

where

1. The argument A_i,, array whose kind must be consistent with subroutine name convention, is
the profile of matrix [A], that inputs the result from decomposition.

2. The argument N_i, an INTEGER(4) variable, is the order of matrix [A].

3. The argument Label i, an INTEGER(4) array, is the address reference label. For the
definition of address reference label, please see section 3.6.

4. The argument X io, array whose kind must be consistent with subroutine name convention,

inputs the right side vector, and returns the solution.

3.4 Fortran Syntax for Subroutine Solution

The following subroutines first decompose [A] into the product of [/ ]T [U], and then

perform forward and backward substitutions. Solve [A]{X}={B} in a single call. Syntax is as
follows:

Solution VSP 4 ( A io, N_i, Label i, X io, NoGood o)
Solution_ VSP_8 ( A_io, N_i, Label i, X io, NoGood o)
Solution_ VSP 10 ( A_io, N_i, Label i, X io, NoGood o)
Solution VSP 16 ( A_io, N_i, Label i, X io, NoGood o)
Solution_ VSP Z4 ( A_io, N i, Label i, X io, NoGood o)
Solution_ VSP Z8 ( A _io, N i, Label i, X io, NoGood o)
Solution_VSP _Z10 ( A_io, N_i, Label i, X io, NoGood 0)
Solution VSP 716 ( A_io, N i, Label i, X io, NoGood o)

where

1.

The argument A_io, array whose kind must be consistent with subroutine name convention,
is the profile of matrix [A], that inputs the original matrix and returns the decomposed result
if the variable NoGood o is false. For the definition of profile, please see section 3.5.

2. The argument N_i, an INTEGER(4) variable, is the order of matrix [A].

3. The argument Label i, an INTEGER(4) array, is the address reference label. For the
definition of address reference label, please see section 3.6.

4. The argument X io, array whose kind must be consistent with subroutine name convention,
inputs the right side vector, and returns the solution if NoGood o is false.

5. The argument NoGood o, a LOGICAL(4) variable, is a flag that indicates if the input matrix
[A] is suitable for the subroutine. If NoGood o=.True., the input matrix [A] is not positive
definite and there is no output from the subroutine; otherwise the profile A io returns the
decomposed matrix [U] and vector X io returns the solution. For the situation where
NoGood o0=.True., please see section 3.7.

3.5 Profile

Profile for a variable-bandwidth, symmetric, and positive definite matrix is as:

17



* % * (3.1)
SV, * * *
* *
+
profile size = Label(N)-1+ N (3.2)

where N is the matrix order, and Label(N) is the address reference label for the N-th column. The
address reference label is discussed in the next section.

3.6 Data Storage Scheme

Data storage scheme must be declared in a Fortran program, for example:
REAL (4) :: A(1,1)

where variable A here is a single precision profile for matrix [A]. For other kinds of variable,
profile must be properly declared. Then, replace the column index, for example j, with the

address reference label, for example Label(J). The coefficient Az‘j in the upper triangular part of

matrix [A] is programmed in a Fortran program as A(L,Label(J)). The following algorithm
defines the address reference labels:

(1) Set Label(1) =1
(2) Fori=2to N, do the following
Label(i) = Label(i-1) + [ number of non-zero fill-ins
above the diagonal in the i-th column ]

For the example in form (3.1), the address reference labels are 1, 2, 3, 4, 7, 8§, and 11.
Equation (3.2) computes 17 non-zero fill-ins that may be checked from the form (3.1). In the i-th
column, the number of non-zero fill-ins above the diagonal is equal to the following:

i-[the row index of the first non-zero fill-in]

Therefore, the first non-zero fill-in in the i-th column is as:

Label(i-1)-Label(i)+i (3.3)

3.7 Failure of Calling Request

If a calling request fails, solving procedure meets a diagonal coefficient that is very small
and is almost negligible compared to unity.
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The subroutines introduced in this chapter deal with symmetric and positive definite
systems without a consideration of pivoting. Failure of request does not mean that the input
matrix is absolutely not positive definite. A pivoting may continue execution. However, pivoting
not only destroys the symmetry but also disturbs sparsity. If a pivoting is necessary, try a
constant-bandwidth solver with partial pivoting or a dense solver with pivoting.

3.8 Fortran Example

For a given system [A]{X}={B}, the left side matrix [A] and the right side vector {B} are
defined as follows:

1 4 2 5
25 29 14 41
88 34 1z
g2 23 1 and 9
45 7 3 303
SV, 22 2 21
a 23

in which the order N=7. A Fortran program for decomposition and substitution is as follows.
Subroutines “Input” and “Output” have data storage scheme. Subroutine “Decompose VSP_4”
decomposes matrix [A], and subroutine “Substitute VSP 4” performs forward and backward
substitutions.

! *** Example program ***
! define variables where the length of A is determined by equation (3.2)

Integer (4), PARAMETER :: N=7
REAL (4) :: A(17),X(N)
INTEGER (4) :: Label(N)
LOGICAL (4) :: NoGood
DATA X/5.0,41.0,12.0,9.0,303.0,21.0,23.0/
DATA Label/1,2,4,6,7,8,11/
! input the upper triangular part of [A]
CALL Input(A,Label)
! decompose in parallel
CALL Decompose VSP_4(A,N,Label,NoGood)
! stop if NoGood=.True.

IF(NoGood) STOP 'Cannot be decomposed'
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! perform substitutions in parallel

CALL Substitute VSP_4(A,N,Label,X)
! output decomposed matrix

CALL Output(A,N,Label)

! output the solution

Write(*,'(" Solution is as:")")
Write(*,*) X

! laipe done
call laipeDone

STOP
END
SUBROUTINE Input(A,Label)

! routine to demonstrate an application of data storage scheme
! (A)FORTRAN CALL: CALL Input(A,Label)

1.A: <R4> profile of matrix [A], dimension(*)

2.Label: <I4> address reference labels, dimension(*)

! dummy arguments

INTEGER (4) :: Label(1)
REAL (4) :: A(1,1)

! input

A(1,Label(1))=1.0
A(1,Label(2))=4.0
A(2,Label(2))=25.0
A(1,Label(3))=2.0
A(2,Label(3))=29.0
A(3,Label(3))=88.0
A(2,Label(4))=14.0
A(3,Label(4))=34.0
A(4,Label(4))=89.0
A(4,Label(5))=23.0
A(5,Label(5))=45.0
A(5,Label(6))= 7.0
A(6,Label(6))=22.0
A(4,Label(7))=1.0
A(5,Label(7))= 3.0
A(6,Label(7))= 2.0
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A(7,Label(7))=9.0

RETURN
END
SUBROUTINE Output(A,N,Label)

routine to output the decomposed matrix by data storage scheme
(A)FORTRAN CALL: CALL Output(A,N,Label)

1.A: <R4> profile of matrix [A], dimension(*)

2.N: <I4> order of matrix [A]

3.Label: <I4> address reference label, dimension(*)

dummy arguments

INTEGER (4) :: N,Label(1)
REAL (4) :: A(1,1)

local variables
INTEGER (4) :: IATEMP,Column,Row

output the coefficients on non-zero fill-ins
where the lower bound of "Row" is computed by equation (3.3)

WRITE(*,'(" Row Column Coefficient")")
WRITE(*,'(14,16,F9.3)") 1,1,A(1,1)
DO I4ATEMP=2,N
Column=Label(I4TEMP)
DO Row=Label(I4TEMP-1)-Column+I4TEMP, I4TEMP
WRITE(*,'(14,16,F9.3)") Row,I4TEMP, A(Row,Column)
END DO
END DO

RETURN
END
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Chapter 4. Dense, Symmetric, and
Positive Definite Systems

4.1 Purpose

This chapter has subroutines for the solution of [A]{X}={B} where the left side matrix [A]
is dense, symmetric, and positive definite. The non-zero fill-ins in the lower triangular part of
matrix [A] have a shape, for example, as:

L1 =V,

* * * +* *
i i W w * *

* * + +* * * *

where the symbol * indicates non-zero fill-ins. Three types of subroutine are introduced in the
chapter, which perform the following functions:

1. Decompose matrix [A] into the product of [ ][ L]T where matrix [L] is the lower

triangular matrix.
2. Perform forward and backward substitutions.
3. Solve [A]{X}={B} in a single call.

Decomposition and substitution must be called in order, and work together as a pair. No
pivoting is applied to the subroutines introduced in this chapter. Subroutines are as follows:

Decompose DSP_4
Decompose DSP 8
Decompose DSP_10
Decompose DSP_16
Decompose DSP 74
Decompose DSP_Z8
Decompose DSP 710
Decompose DSP Z16

Substitute DSP 4
Substitute DSP_8
Substitute DSP_10
Substitute DSP_16
Substitute DSP_Z4
Substitute DSP_Z8
Substitute DSP_Z10
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Substitute DSP_Z16

Solution DSP_4
Solution DSP 8
Solution DSP_10
Solution DSP_16
Solution DSP 74
Solution DSP_Z8
Solution_ DSP_Z10
Solution DSP_Z16

4.2 Fortran Syntax for Subroutine Decompose

The following subroutines decompose [A] into [A]=[ L] L]T . Syntax is as follows:

Decompose DSP 4(A _io, N i, Label i, NoGood o)
Decompose DSP 8(A io, N i, Label i, NoGood o)
Decompose DSP_10(A io, N _i, Label i, NoGood 0)
Decompose DSP_16(A _io, N i, Label i, NoGood o)
Decompose DSP_Z4(A_io, N i, Label i, NoGood o)
Decompose DSP_Z8(A_io, N i, Label i, NoGood o)
Decompose DSP_Z10(A_io, N_i, Label i, NoGood o)
Decompose DSP_Z16(A_io, N_i, Label i, NoGood o)

where

1. The argument A_io, array whose kind must be consistent with subroutine name convention, is
the profile of matrix [A] that inputs the original matrix and returns the result if the variable
NoGood o is false. For the definition of profile, please see section 4.5.

2. The argument N_i, an INTEGER(4) variable, is the order of matrix [A].

. The argument Label i, an INTEGER(4) array, is the address reference label. For the

definition of address reference label, please see section 4.6.

4. The argument NoGood o, a LOGICAL(4) variable, is a flag that indicates if the input matrix
[A] is suitable for the subroutine. If NoGood o=.True., the input matrix [A] cannot be
decomposed by the subroutine and there is no output from the subroutine; otherwise the
profile A io returns the decomposed matrix [L]. For the situation where NoGood o=.True.,
please see section 4.7.

W

4.3 Fortran Syntax for Subroutine Substitute

The following subroutines perform forward and backward substitutions. Syntax is as
follows:

Substitute DSP _4(A i, N i, Label i, sX i0)
Substitute DSP_8(A_i, N _i, Label i, sX io)
Substitute DSP_10(A_i, N_i, Label i, sX io)
Substitute DSP_16(A i, N_i, Label i, sX io)
Substitute DSP_Z4(A i, N i, Label i, sX io)
Substitute DSP_Z8(A i, N i, Label i, sX io)
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Substitute DSP_Z10(A i, N i, Label i, sX i0)
Substitute DSP Z16(A i, N i, Label i, sX i0)

where

. The argument A i, array whose kind must be consistent with subroutine name convention, is

the profile of matrix [A] that inputs the result from decomposition.

The argument N_i, an INTEGER(4) variable, is the order of matrix [A].

The argument Label i, an INTEGER(4) array, is the address reference label. For the
definition of address reference label, please see section 4.6.

. The argument X io, array whose kind must be consistent with subroutine name convention,

inputs the right side vector, and returns the solution.

4.4 Fortran Syntax for Subroutine Solution

The following subroutines first decompose [A] into the product of [[ || L]T , and then

perform forward and backward substitutions. Solve [A]{X}={B} in a single call. The syntax is as
follows:

Solution DSP 4(A_io, N i, Label i, X io, NoGood 0)
Solution DSP_8(A_io, N i, Label i, X io, NoGood 0)
Solution DSP_10(A _io, N i, Label i, X io, NoGood o)
Solution DSP_16(A _io, N i, Label i, X io, NoGood 0)
Solution DSP_Z4(A _io, N _i, Label i, X io, NoGood o)
Solution DSP Z8(A_io, N i, Label i, X io, NoGood_ o)
Solution DSP_Z10(A _io, N i, Label i, X io, NoGood o)
Solution DSP_Z16(A _io, N i, Label i, X io, NoGood o)

where

1.

98]

The argument A_io, array whose kind must be consistent with subroutine name convention, is
the profile of matrix [A], that inputs the original matrix and returns the decomposed result if
the variable NoGood o is false. For the definition of profile, please see section 4.5.

The argument N_i, an INTEGER(4) variable, is the order of matrix [A].

. The argument Label i, an INTEGER(4) array, is the address reference label. For the

definition of address reference label, please see section 4.6.
The argument X io, array whose kind must be consistent with subroutine name convention,
inputs the right side vector, and returns the solution if NoGood o is false.

. The argument NoGood o, a LOGICAL(4) variable, is a flag that indicates if the input matrix

[A] is suitable for the subroutine. If NoGood o=.True., the input system cannot be solved by
the subroutine and there is no output from the subroutine; otherwise the profile A io returns
the decomposed matrix [L] and vector X io returns the solution. For the situation where
NoGood o=.True., please see section 4.7.

4.5 Profile

Profile for a dense, symmetric, and positive definite matrix is as:
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L1 =Y.

* * * * |:4-1:|

* * * * *
i i i i W W

* * * * + + +

where the symbol * represents non-zero fill-ins. Total length of profile is determined as
profile size = ( (N+1) * N ) /2 4.2)

where N is the matrix order.

4.6 Data Storage Scheme

Data storage scheme for a dense and symmetric matrix must be declared in a Fortran
program, for example:

REAL (4) :: A(1,1)

where variable A here is a single precision profile for a matrix [A]. For other kinds of variable,
profile must be properly declared. Then, replace column index, for example j, with the address

reference label, for example Label(J). The coefficient Aij in the lower triangular part of matrix

[A] is programmed in a Fortran program as A(I,Label(J)). The following algorithm defines the
address reference labels:

(1) Set Label(1) =1
(2) Fori=2to N, do the following
Label(i) = Label(i-1) + [ number of non-zero fill-ins in the i-th column ] 4.3)

For the example in form (4.1), the address reference labels are 1, 7, 12, 16, 19, 21, and 22.
Equation (4.2) computes 28 non-zero fill-ins that may be checked from the form (4.1).

4.7 Failure of Calling Request

If a calling request fails, solving procedure meets a diagonal coefficient that is very small
and is negligible compared to unity.

The subroutines introduced in this chapter deal with symmetric and positive definite
systems without a consideration of pivoting. Failure of request does not mean that the input
matrix is indefinite. A pivoting may continue execution. However, pivoting may destroy
symmetry. If a pivoting is necessary, try a dense solver with pivoting. Pivoting procedure always
takes more time, and is less efficient in parallel processing.

4.8 Fortran Example
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For a given system [A]{X}={B}, the left side matrix [A] and the right side vector {B} are
defined as follows:

1 21
4 25 sym. 141
z 19 44 z

3 9 34 89 and =

i -2z 3 0 45 333
4 2 2z 11 7 6& 1
z 7 3 4 3 2z 9 3

in which the order N=7. A Fortran program for decomposition and substitution is as follows.
Subroutines “Input” and “Output” have data storage scheme. Subroutine “DenseLabel” based on
equation (4.3) generates address reference labels. Two LAIPE subroutines are applied in this
example: one is subroutine “Decompose DSP 4" that decomposes matrix [A]; the other is
subroutine “Substitute DSP_4” that performs forward and backward substitutions.

! #** Example program ***
! define variables where the length of A is determined by equation (4.2)

Integer (4),PARAMETER :: N=7
REAL (4) :: A(((N+1)*N)/2),X(N)
INTEGER (4) :: Label(N)
LOGICAL (4) :: NoGood
DATA X/21.0,141.0,2.0,9.0,333.0,1.0,3.0/
! generate address reference labels
CALL DenseLabel(Label,N)
! input the lower triangular part of [A]
CALL Input(A,Label)
! decompose in parallel
CALL Decompose DSP_4(A,N,Label,NoGood)
! stop if NoGood=.True.
IF(NoGood) STOP 'Cannot be decomposed'

! perform substitutions in parallel

CALL Substitute DSP_4(A,N,Label,X)
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!
!

|

|

|

output decomposed matrix

CALL Output(A,N,Label)

! output the solution

Write(*,'(" Solution is as:")")
Write(*,*) X

laipe done
call laipeDone

STOP
END

SUBROUTINE DenseLabel(Label,N)
routine to generate address reference labels for a dense lower triangular matrix
(A)FORTRAN CALL: CALL DenseLabel(Label,N)
1.Label: <I4> return address reference labels, dimension(N)
2.N: <I4> order of matrix
dummy arguments
INTEGER*4 Label(1),N

local variables

INTEGER*4 I4ATEMP,J4ATEMP

! generate address label

I4TEMP=N-1

Label(1)=1

DO JATEMP=2N
Label(JATEMP)=Label(JATEMP-1)+I4TEMP
[4TEMP=I4TEMP-1

END DO

RETURN
END
SUBROUTINE Input(A,Label)

routine to demonstrate an application of the data storage scheme
(A)FORTRAN CALL: CALL Input(A,Label)

1.A: <R4> profile of matrix [A], dimension(*)

2.Label: <I4> the address reference labels, dimension(N)
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! dummy arguments

!
INTEGER*4 Label(1)
REAL*4 A(1,1)

!

! input

!

A(1,Label(1))=1.0
A(2,Label(1))=4.0
A(3,Label(1))=2.0
A(4,Label(1))=3.0
A(5,Label(1))=1.0
A(6,Label(1))=4.0
A(7,Label(1))=2.0
A(2,Label(2))=25.0
A(3,Label(2))=19.0
A(4,Label(2))=9.0
A(5,Label(2))=-2.0
A(6,Label(2))=2.0
A(7,Label(2))= 7.0
A(3,Label(3))=44.0
A(4,Label(3))=34.0
A(5,Label(3))=3.0
A(6,Label(3))=2.0
A(7,Label(3))=3.0
A(4,Label(4))=89.0
A(5,Label(4))= 0.0
A(6,Label(4))=11.0
A(7,Label(4))=4.0
A(5,Label(5))=45.0
A(6,Label(5))="7.0
A(7,Label(5))=3.0
A(6,Label(6))=68.0
A(7,Label(6))= 2.0
A(7,Label(7))=9.0

RETURN
END
SUBROUTINE Output(A,N,Label)

routine to output the decomposed matrix by data storage scheme
(A)FORTRAN CALL: CALL Output(A,N,Label)

1.A: <R4> profile of matrix [A], dimension(*)

2.N: <I4> order of matrix [A]

3.Label: <I4> address reference labels, dimension(N)

dummy arguments

INTEGER*4 N,Label(1)
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REAL*4 A(1,1)
! local variables
INTEGER*4 Column,Row,J4TEMP
! output the coefficients on non-zero fill-ins

WRITE(*,'(" Row Column Coefficient")")
DO I4TEMP=1,N
Column=Label(I4TEMP)
DO Row=I4TEMP,N
WRITE(*,'(14,16,F9.3)") Row, IATEMP, A(Row,Column)
END DO
END DO

RETURN
END
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Chapter 5. Constant-Bandwidth and Symmetric Systems

5.1 Purpose

This chapter has subroutines for the solution of [A]{X}={B} where the left side matrix [A]
has a constant bandwidth and is symmetric. There is no consideration of definiteness of matrix
[A]. The non-zero fill-ins in the lower triangular part of matrix [A] have a shape, for example, as:

Three types of subroutine are introduced in this chapter, which perform the following
functions:

1. Decompose matrix [A] into the product of [L][D][ L]T where matrix [L] is the lower

triangular matrix and matrix [D] is the diagonal matrix.
2. Perform forward and backward substitutions.
3. Solve [A]{X}={B} in a single call.

Decomposition and substitution must be called in order, and work together as a pair. No
pivoting is applied to the subroutines introduced in this chapter. Subroutines are as follows:

Decompose CSG 4
Decompose CSG_8
Decompose CSG 10
Decompose CSG 16
Decompose CSG 74
Decompose CSG Z8
Decompose CSG_Z10
Decompose CSG_Z16

Substitute CSG_4
Substitute CSG_8
Substitute CSG_10
Substitute CSG_16
Substitute CSG_Z4
Substitute CSG_Z8
Substitute CSG_Z10
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Substitute_ CSG_Z16

Solution CSG 4
Solution CSG_8
Solution_ CSG_10
Solution CSG_16
Solution CSG_Z4
Solution_ CSG_Z8
Solution_CSG_Z10
Solution_CSG_Z16

meSolution CSG 4
meSolution CSG_8
meSolution CSG_10
meSolution CSG_16
meSolution CSG_Z4
meSolution CSG_Z8
meSolution CSG_Z10
meSolution CSG_Z16

The subroutines with a prefix "me", i.e., meSolution CSG 4, are multiple entry direct

solvers that are most well suitable for systems with a small bandwidth. For more detailed
discussions on multiple entry solvers, please see section 1.7.

5.2 Fortran Syntax for Subroutine Decompose

The following subroutines decompose matrix [A] into [A]=[L][D]| L]T . Syntax is as
follows:

Decompose CSG 4(A_io, N_i, LowerBandwidth i, NoGood 0)
Decompose CSG_8(A_io, N_i, LowerBandwidth i, NoGood o)
Decompose CSG _10(A _io, N _i, LowerBandwidth i, NoGood o)
Decompose CSG 16(A _io, N i, LowerBandwidth i, NoGood o)
Decompose CSG_Z4(A _io, N_i, LowerBandwidth_i, NoGood_0)
Decompose CSG_Z8(A _io, N_i, LowerBandwidth_i, NoGood_o0)
Decompose CSG_Z10(A_io, N_i, LowerBandwidth i, NoGood o)
Decompose CSG_Z16(A_io, N_i, LowerBandwidth_i, NoGood o)

where

1. The argument A_io, array whose kind must be consistent with subroutine name convention, is
the profile of matrix [A] that inputs the original matrix and returns the result if the variable
NoGood o is false. For the definition of profile, please see section 5.6.

2. The argument N _1i, an INTEGER(4) variable, is the order of matrix [A].

. The argument LowerBandwidth_i, an INTEGER(4) variable, is the lower bandwidth of matrix
[A]. The lower bandwidth is the maximal number of non-zero fill-ins below the diagonal in a
column.

4. The argument NoGood o, a LOGICAL(4) variable, is a flag that indicates if the input matrix

[A] is suitable for the subroutine. If NoGood o=.True., the input matrix [A] cannot be
decomposed and there is no output returned; otherwise the profile A io returns the

W
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decomposed matrices [L] and [D]. For the situation where NoGood o=.True., please see
section 5.8.

5.3 Fortran Syntax for Subroutine Substitute

The following subroutines perform forward and backward substitutions. Syntax is as
follows:

Substitute CSG_4(A_i, N _i, LowerBandwidth i, X io)
Substitute CSG_8(A_i, N _i, LowerBandwidth i, X io)
Substitute CSG_10(A i, N_i, LowerBandwidth i, X i0)
Substitute CSG_16(A i, N_i, LowerBandwidth i, X i0)
Substitute CSG_Z4(A i, N_i, LowerBandwidth i, X io)
Substitute CSG_Z8(A i, N i, LowerBandwidth i, X io)
Substitute CSG_Z10(A i, N_i, LowerBandwidth i, X i0)
Substitute CSG_Z16(A_i, N_i, LowerBandwidth_i, X io)

where

1. The argument A i, array whose kind must be consistent with subroutine name convention, is
the profile of matrix [A] that inputs the result from decomposition.

2. The argument N_i, an INTEGER(4) variable, is the order of matrix [A].

3. The argument LowerBandwidth_i, an INTEGER(4) variable, is the lower bandwidth of matrix
[A]. The lower bandwidth is the maximal number of non-zero fill-ins below the diagonal in a
column.

4. The argument X io, array whose kind must be consistent with subroutine name convention,
inputs the right side vector, and returns the solution.

5.4 Fortran Syntax for Subroutine Solution

The following subroutines first decompose [A] into the product of [L][D][L ]T , and then

perform forward and backward substitutions. Solve [A]{X}={B} in a single call. The syntax is as
follows:

Solution CSG_4(A_io, N_i, LowerBandwidth i, X io, NoGood o)
Solution_CSG_8(A _io, N_i, LowerBandwidth i, X io, NoGood o)
Solution_ CSG_10(A_io, N_i, LowerBandwidth_i, X io, NoGood_o)
Solution CSG_16(A _io, N i, LowerBandwidth i, X io, NoGood o)
Solution CSG_Z4(A_io, N_i, LowerBandwidth i, X io, NoGood o)
Solution CSG_Z8(A_io, N _i, LowerBandwidth i, X io, NoGood o)
Solution CSG_Z10(A_io, N_i, LowerBandwidth i, X io, NoGood o)
Solution CSG_Z16(A_io, N _i, LowerBandwidth i, X io, NoGood 0)

where
1. The argument A _io, array whose kind must be consistent with subroutine name convention, is
the profile of matrix [A], that inputs the original matrix and returns the decomposed result if

the variable NoGood o is false. For the definition of profile, please see section 5.6.
2. The argument N i, an INTEGER(4) variable, is the order of matrix [A].
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3. The argument LowerBandwidth i, an INTEGER(4) variable, is the lower bandwidth of matrix
[A]. The lower bandwidth is the maximal number of non-zero fill-ins below the diagonal in a
column.

4. The argument X io, array whose kind must be consistent with subroutine name convention,
inputs the right side vector, and returns the solution if NoGood o is false.

5. The argument NoGood o, a LOGICAL(4) variable, is a flag that indicates if the input system
is suitable for the subroutine. If NoGood o=.True., the input system cannot be solved by the
subroutine and there is no output returned; otherwise the profile A _io returns the decomposed
matrices [L] and [D], and vector X io returns the solution. For the situation where
NoGood o=.True., please see section 5.8.

5.5 Fortran Syntax for Subroutine meSolution

The following subroutines solve the system [A][X]=[B] by multiple entry procedure, where
[X] and [B] may be a matrix with multiple vectors, i.e., [X]=[{ X| } { X, } ..]and [BI=[{ B, }

{ 32 } ...]. Syntax is as follows:

meSolution CSG_4(A_io,N_i,LowerBandwidth i,X io,Nset i,WorkingSpace x,NoGood o)
meSolution CSG_8(A_io,N i,LowerBandwidth i,X io,Nset i,WorkingSpace x,NoGood o)
meSolution CSG_10(A_io,N_i,LowerBandwidth i,X io,Nset i,WorkingSpace x,NoGood o)
meSolution CSG_16(A_io,N_i,LowerBandwidth i,X io,Nset i,WorkingSpace x, NoGood 0)
meSolution CSG_Z4(A_io,N_i,LowerBandwidth i,X io,Nset i,WorkingSpace x, NoGood o)
meSolution CSG_Z8(A _io,N_i,LowerBandwidth i,X io,Nset i,WorkingSpace x, NoGood 0)
meSolution CSG_ Z10(A_io,N_i,LowerBandwidth i,X io,Nset i,WorkingSpace x,NoGood 0)
meSolution CSG_Z16(A_io,N_i,LowerBandwidth i,X io,Nset i,WorkingSpace x,NoGood 0)

where

1. The argument A _io, array whose kind must be consistent with subroutine name convention, is
the profile of matrix [A] that inputs the original matrix. After returning from this subroutine,
the content in array A _io is destroyed no matter if the calling request is successful or not. For
the definition of profile, please see section 5.6.

2. The argument N i, an INTEGER(4) variable, is the order of matrix [A].

. The argument LowerBandwidth_i, an INTEGER(4) variable, is the lower bandwidth of matrix
[A]. The lower bandwidth is the maximal number of non-zero fill-ins below the diagonal in a
column. This subroutine is more efficient if the lower bandwidth is small.

4. The argument X io, array whose kind must be consistent with subroutine name convention,

inputs the right side vector(s), and returns the solution if NoGood o is false.

The argument Nset_i, an INTEGER(4) variable, is the number of right side vectors.

6. The argument WorkingSpace x, array whose kind must be consistent with subroutine name
convention and providing a space of (2*N_i*LowerBandwidth I) elements, is a working
space.

7. The argument NoGood o, a LOGICAL(4) variable, is a flag that indicates if the input matrix
[A] is suitable for the subroutine. If NoGood o=.True., the input system cannot be solved by
this function and there is no output; otherwise the vector “X i0” returns the solution. For the
situation NoGood o=.True., please see section 5.8.

W

hd

5.6 Profile
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Profile for a constant-bandwidth and symmetric matrix is as:

w w SV,
* * *
* * * * |:5.1:|

where the symbol * represents non-zero fill-ins and the symbol & indicates an extra memory
space whose content is never used. Total length of profile is determined as

profile size = (N-1) * LowerBandwidth + N (5.2)

where N is the matrix order, and LowerBandwidth is the lower bandwidth.

5.7 Data Storage Scheme

Data storage scheme for a constant-bandwidth and symmetric matrix must be declared in a
Fortran program, for example:

INTEGER (4) :: LowerBandwidth
REAL (4) :: A(LowerBandwidth,1)

where variable A here is a single precision profile for matrix [A]. For other kinds of variable,
profile must be properly declared. Then, the coefficient Aij in the lower triangular part of matrix

[A] is programmed in a Fortran program as A(1,J).

5.8 Failure of Calling Request

If a calling request fails, solving procedure meets a diagonal coefficient whose absolute
value is very small and is almost negligible compared to unity.

The subroutines introduced in this chapter deal with symmetric systems without a
consideration of pivoting. Since a symmetric solver does not consider pivoting. Failure of request
does not mean that the input matrix is absolutely singular. A pivoting may continue execution.
However, pivoting may destroy symmetry. If a pivoting is necessary, try a solver with partial
pivoting that will be discussed in chapter 13. A pivoting procedure always takes more time, and
is less efficient in parallel processing.

5.9 Fortran Example
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For a given system [A]{X}={B}, the left side matrix [A] and the right side vector {B} are

defined as follows:

21
25 SV, 11
29 14 122
29 34 19 and 19
3 23 5 333

11 7 22 1

3 2 a 3

in which the order N=7 and the lower bandwidth, denoted by LowerBandwidth, is 2. A Fortran
program for decomposition and substitution is as follows. Subroutines “Input” and “Output”
have data storage scheme. Subroutine “Decompose CSG_4” decomposes matrix [A], subroutine
“Substitute CSG_4” performs forward and backward substitutions.

! *** Example program ***
! define variables where the length of A is determined by equation (5.2)
Integer (4) , PARAMETER :: N=7
Integer (4), PARAMETER :: LowerBandwidth=2
REAL (4) :: A((N-1)*LowerBandwidth+N),sX(N)
LOGICAL*4 NoGood
DATA sX/21.0,11.0,122.0,19.0,333.0,1.0,3.0/
! input the lower triangular part of [A]
CALL Input(A,LowerBandwidth)
! decompose in parallel
CALL Decompose CSG_4(A,N,LowerBandwidth,NoGood)
! stop if NoGood=.True.
IF(NoGood) STOP 'Cannot be decomposed'
! perform substitutions in parallel
CALL Substitute CSG_4(A,N,LowerBandwidth,sX)
! output decomposed matrix
CALL Output(A,N,LowerBandwidth)
! output the solution
Write(*,'(" Solution is as:")")

Write(*,*) X
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|

! laipe done

call laipeDone

STOP
END
SUBROUTINE Input(A,LowerBandwidth)

routine to demonstrate an application of data storage scheme

(A)FORTRAN CALL: CALL Input(A,LowerBandwidth)
1.A: <R4> profile of matrix [A], dimension(*)
2.LowerBandwidth: <I4> lower bandwidth

dummy arguments

INTEGER (4) :: LowerBandwidth
REAL (4) :: A(LowerBandwidth,1)

! input

A(L,D= 1.0
AQ2,1)=4.0
AB,1)=2.0
A(2,2)=25.0
A(3,2)=29.0
A(4,2)=99.0
A(3,3)=14.0
A(4,3)=34.0
A(5,3)=3.0
A(4,4)=19.0
A(5,4)=23.0
A(6,4)=11.0
A(5,5)=5.0
A(6,5)=17.0
A(7,5)=3.0
A(6,6)=22.0
A(6,6)=22.0
A(7,6)= 2.0
A(7,7)=9.0

RETURN
END
SUBROUTINE Output(A,N,LowerBandwidth)

routine to output the decomposed matrix by data storage scheme
(A)FORTRAN CALL: CALL Output(A,N,LowerBandwidth)
1.A: <R4> profile of matrix [A], dimension(*)
2.N: <I4> order of matrix [A]
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3 .LowerBandwidth: <I4> lower bandwidth
dummy arguments

INTEGER (4) :: N,LowerBandwidth
REAL (4) :: A(LowerBandwidth,1)

! local variables
INTEGER*4 Column,Row
! output the coefficients on non-zero fill-ins

WRITE(*,'(" Row Column Coefficient")")
DO Column=1,N
DO Row=Column, MINO(Column+LowerBandwidth,N)
WRITE(*,'(14,16,F9.3)") Row,Column, A(Row,Column)
END DO
END DO

RETURN
END
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Chapter 6. Variable-Bandwidth and Symmetric Systems

6.1 Purpose

This chapter has subroutines for the solution of [A]{X}={B} where the left side matrix [A]
has a variable bandwidth and is symmetric. There is no consideration of definiteness of matrix
[A]. The non-zero fill-ins in the upper triangular part of matrix [A] have a shape, for example, as:

w w w
Sy, =% 0%
* *

which looks like a skyline in a city, and is sometimes called skyline solver. Three types of
subroutine are introduced in the chapter, which perform the following functions:

1. Decompose matrix [A] into the product of [[/ ]T[ D][ U] where matrix [U] is the upper

triangular matrix and matrix [D] is the diagonal matrix.
2. Perform forward and backward substitutions.
3. Solve [A]{X}={B} in a single call.

Decomposition and substitution must be called in order, and work together as a pair. No
pivoting is applied to the subroutines, which are as:

Decompose VSG 4
Decompose VSG_8
Decompose VSG_10
Decompose VSG 16
Decompose VSG 74
Decompose VSG Z8
Decompose VSG_Z10
Decompose VSG Z16

Substitute VSG 4
Substitute VSG_8
Substitute VSG_10
Substitute VSG 16
Substitute VSG 74
Substitute VSG_Z8
Substitute VSG_Z10
Substitute VSG_Z16
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Solution VSG 4
Solution VSG 8
Solution VSG 10
Solution_ VSG_16
Solution_ VSG_Z4
Solution VSG_Z8
Solution_VSG_Z10
Solution_VSG_Z16

6.2 Fortran Syntax for Subroutine Decompose

The following subroutines decompose matrix [A] into [A]=[U ]T [D][U] - Syntax is as

follows:

Decompose VSG 4(A_io, N i, Label i, NoGood o)
Decompose VSG_8(A io, N i, Label i, NoGood o)
Decompose VSG_10(A _io, N _i, Label i, NoGood o)
Decompose VSG _16(A _io, N i, Label i, NoGood o)
Decompose VSG_Z4(A io, N _i, Label i, NoGood 0)
Decompose VSG_Z8(A io, N i, Label i, NoGood 0)
Decompose VSG_Z10(A_io, N_i, Label i, NoGood o)
Decompose VSG_Z16(A _io, N i, Label i, NoGood o)

where

L.

W

The argument A _io, array whose kind must be consistent with subroutine name convention, is
the profile of matrix [A] that inputs the original matrix and returns the result if the variable
NoGood o is false. For the definition of profile, please see section 6.5.
The argument N _i, an INTEGER(4) variable, is the order of matrix [A].

. The argument Label i, an INTEGER(4) array, is the address reference label. For the

definition of address reference label, please see section 6.6.

The argument NoGood o, a LOGICAL(4) variable, is a flag that indicates if the input matrix
[A] is suitable for decomposition. If NoGood o=.True., the input matrix [A] cannot be
decomposed and there is no output returned; otherwise the profile A _io returns the
decomposed matrices [U] and [D]. For the situation where NoGood o=.True., please see
section 6.7.

6.3 Fortran Syntax for Subroutine Substitute

The following subroutines perform forward and backward substitutions. Syntax is as

follows:

Substitute VSG_4(A_i, N_i, Label i, X io)
Substitute VSG_8(A i, N_i, Label i, X io)
Substitute VSG_10(A i, N_i, Label i, X i0)
Substitute VSG_16(A i, N_i, Label i, X io)
Substitute VSG_Z4(A i, N i, Label i, X io)
Substitute VSG_Z8(A i, N i, Label i, X io)
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Substitute VSG_Z10(A i, N i, Label i, X io)
Substitute VSG_Z16(A i, N i, Label i, X io)

where

. The argument A i, array whose kind must be consistent with subroutine name convention, is

the profile of matrix [A] that inputs the result from decomposition.

The argument N_i, an INTEGER(4) variable, is the order of matrix [A].

The argument Label i, an INTEGER(4) array, is the address reference label. For the
definition of address reference label, please see section 6.6.

. The argument X io, array whose kind must be consistent with subroutine name convention,

inputs the right side vector, and returns the solution.

6.4 Fortran Syntax for Subroutine Solution

The following subroutines first decompose matrix [A] into the product of [U/ ]T [D][[U]

and then perform forward and backward substitutions. Solve the system [A]{X}={B} in a single
call. Syntax is as follows:

Solution VSG 4(A io, N i, Label i, X io, NoGood 0)
Solution VSG 8(A io, N i, Label i, X io, NoGood o)
Solution VSG_10(A _io, N _i, Label i, X io, NoGood o)
Solution_ VSG_16(A _io, N _i, Label i, X io, NoGood 0)
Solution VSG_Z4(A io, N i, Label i, X io, NoGood 0)
Solution_VSG_Z8(A io, N_i, Label i, X io, NoGood o)
Solution_ VSG_Z10(A_io, N i, Label i, X io, NoGood o)
Solution VSG _Z16(A_io, N i, Label i, X io, NoGood o)

where

1.

The argument A_io, array whose kind must be consistent with subroutine name convention, is
the profile of matrix [A], that inputs the original matrix and returns the decomposed result if
the variable NoGood o is false. For the definition of profile, please see section 6.5.

The argument N_i, an INTEGER(4) variable, is the order of matrix [A].

. The argument Label i, an INTEGER(4) array, is the address reference label. For the

definition of address reference label, please see section 6.6.
The argument X io, array whose kind must be consistent with subroutine name convention,
inputs the right side vector, and returns the solution if NoGood o is false.

. The argument NoGood o, a LOGICAL(4) variable, is a flag that indicates if the input system

is suitable for the subroutine. If NoGood o=.True., the input system cannot be solved by the
subroutine and there is no output returned; otherwise the profile A io returns the decomposed
matrices [U] and [D], and vector X io returns the solution. For the situation where
NoGood_o=.True., please see section 6.7.

6.5 Profile

Profile for a variable-bandwidth and symmetric matrix is as:
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where the symbol * represents non-zero fill-ins. Total length of profile is determined as
profile size = Label(N)-1+ N (6.2)

where N is the matrix order, and Label(N) is the address reference label for the N-th column. The
address reference label is discussed in the next section.

6.6 Data Storage Scheme

Data storage scheme for a variable-bandwidth and symmetric matrix must be declared in a
Fortran program, for example:

REAL (4) :: A(1,1)

where variable A here is a single precision profile for matrix [A]. For other kinds of variable,
profile must be properly declared. Then, replace the column index, for example j, with the

address reference label, for example Label(J). The coefficient Aij in the upper triangular part of

matrix [A] is programmed in a Fortran program as A(I,Label(J)). Address reference labels are
defined by the following algorithm where N is the order of matrix [A]:

(1) Set Label(1) =1
(2) Fori=2to N, do the following
Label(i) = Label(i-1) + [ number of non-zero fill-ins
above the diagonal in the i-th column ] (6.3)
For the example in form (6.1), the address reference labels are 1, 2, 3, 4, 7, 8, and 11. Equation
(6.2) computes 17 non-zero fill-ins that may be checked from the form (6.1). In the i-th column,
the number of non-zero fill-ins above the diagonal is equal to the following:
i-[the row index of the first non-zero fill-in]

Therefore, the first non-zero fill-in in the i-th column is as:

Label(i-1)-Label(i)+i (6.4)
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6.7 Failure of Calling Request

If a calling request fails, solving procedure meets a diagonal coefficient whose absolute
value is very small and is negligible compared to unity.

The subroutines introduced in this chapter deal with symmetric systems without a
consideration of pivoting. Failure of request does not mean that the input matrix is absolutely
singular. A pivoting may continue execution. However, pivoting may destroy not only symmetric
property but also sparsity. If a pivoting is necessary, try a constant-bandwidth solver with partial
pivoting or a dense solver with pivoting.

6.8 Fortran Example

For a given system [A]{X}={B}, the left side matrix [A] and the right side vector {B} are
defined as follows:

1 4 72 5
25 29 44 41
14 34 1z
19 23 a and =]
8 37 3 303
=Y. 2 2 21
1 23

in which the order N=7. A Fortran program for decomposition and substitution is as follows.
Subroutines “Input” and “Output” have data storage scheme. Subroutine “Decompose VSG 4”
decomposes matrix [A], and subroutine “Substitute VSG 4” performs forward and backward
substitutions.

| *** Example program ***
! define variables where the length of A is determined by equation (6.2)

PARAMETER (N=7)

REAL*4 A(17),X(N)

INTEGER*4 Label(N)

LOGICAL*4 NoGood

DATA X/5.0,41.0,12.0,9.0,303.0,21.0,23.0/
DATA Label/1,2,4,6,7,8,11/

! input the upper triangular part of [A]
CALL Input(A,Label)

! decompose in parallel
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|

CALL Decompose VSG 4(A,N,Label, NoGood)
stop if NoGood=.True.

IF(NoGood) STOP 'Cannot be decomposed'
perform substitutions in parallel

CALL Substitute VSG_4(A,N,Label, X)
output decomposed matrix

CALL Output(A,N,Label)
output the solution

Write(*,'(" Solution is as:")")
Write(*,*) X

laipe done
call laipeDone

STOP
END

SUBROUTINE Input(A,Label)

routine to demonstrate an application of data storage scheme

(A)FORTRAN CALL: CALL Input(A,Label)
1.A: <R4> profile of matrix [A], dimension(*)
2.Label: <I4> address reference labels, dimension(*)

dummy arguments

INTEGER*4 Label(1)
REAL*4 A(1,1)

! input

A(1,Label(1))= 1.0
A(1,Label(2))= 4.0
A(2,Label(2))=25.0
A(1,Label(3))=72.0
A(2,Label(3))=29.0
A(3,Label(3))=14.0
A(2,Label(4))=44.0
A(3,Label(4))=34.0
A(4,Label(4))=19.0
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A(4,Label(5))=23.0
A(5,Label(5))= 8.0
A(5,Label(6))=37.0
A(6,Label(6))=2.0
A(4,Label(7))=9.0
A(5,Label(7))=3.0
A(6,Label(7))=2.0
A(7,Label(7))=1.0

RETURN
END
SUBROUTINE Output(A,N,Label)

routine to output the decomposed matrix by data storage scheme
(A)FORTRAN CALL: CALL Output(A,N,Label)

1.A: <R4> profile of matrix [A], dimension(*)

2.N: <I4> order of matrix [A]

3.Label: <I4> address reference labels, dimension(*)

dummy arguments

INTEGER*4 N,Label(1)
REAL*4 A(1,1)

local variables
INTEGER*4 I4ATEMP,Column,Row

output the coefficients on non-zero fill-ins where the lower bound
of "Row" is computed by equation (6.4)

WRITE(*,'(" Row Column Coefficient")")
WRITE(*,'(14,16,F9.3)") 1,1,A(1,1)
DO I4TEMP=2,N
Column=Label(I4TEMP)
DO Row=Label(I4TEMP-1)-Column+I4TEMP, IATEMP
WRITE(*,'(14,16,F9.3)") Row,I4TEMP, A(Row,Column)
END DO
END DO

RETURN
END
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Chapter 7. Dense and Symmetric Systems

7.1 Purpose

This chapter has subroutines for the solution of [A]{X}={B} where the left side matrix [A]
is dense and symmetric. There is no consideration of definiteness of matrix [A]. The non-zero
fill-ins in the lower triangular part of matrix [A] have a shape, for example, as:

where the symbol * indicates non-zero fill-ins. Three types of subroutine are introduced in this
chapter, which perform the following functions:

1. Decompose matrix [A] into the product of [L][D]] L]T where matrix [L] is the lower

triangular matrix and matrix [D] is the diagonal matrix.
2. Perform forward and backward substitutions.
3. Solve [A]{X}={B} in a single call.

Decomposition and substitution must be called in order, and work together as a pair. No
pivoting is applied to the following subroutines:

Decompose DSG 4
Decompose DSG 8
Decompose DSG 10
Decompose DSG 16
Decompose DSG 74
Decompose DSG Z8
Decompose DSG Z10
Decompose DSG Z16

Substitute DSG_4
Substitute DSG_8
Substitute DSG_10
Substitute DSG 16
Substitute DSG 74
Substitute DSG_Z8
Substitute DSG_Z10
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Substitute DSG_Z16

Solution DSG 4
Solution DSG 8
Solution DSG_10
Solution DSG_16
Solution DSG_Z4
Solution DSG_Z8
Solution DSG_Z10
Solution DSG_Z16

7.2 Fortran Syntax for Subroutine Decompose

The following subroutines decompose matrix [A] into [A]=[L][D]| L]T . Syntax is as
follows:

Decompose DSG_4(A io, N i, Label i, NoGood o)
Decompose DSG_8(A io, N i, Label i, NoGood o)
Decompose DSG_10(A io, N i, Label i, NoGood 0)
Decompose DSG_16(A io, N i, Label i, NoGood 0)
Decompose DSG Z4(A io, N i, Label i, NoGood 0)
Decompose DSG_Z8(A _io, N _i, Label i, NoGood 0)
Decompose DSG_Z10(A _io, N i, Label i, NoGood o)
Decompose DSG_Z16(A _io, N i, Label i, NoGood o)

where

1. The argument A_io, array whose kind must be consistent with subroutine name convention, is
the profile of matrix [A] that inputs the original matrix and returns the result if the variable
NoGood o is false. For the definition of profile, please see section 7.5.

2. The argument N_i, an INTEGER(4) variable, is the order of matrix [A].

3. The argument Label i, an INTEGER(4) array, is the address reference label. For the
definition of address reference label, please see section 7.6.

4. The argument NoGood o, a LOGICAL(4) variable, is a flag that indicates if the input matrix
[A] is suitable for the subroutine. If NoGood o=.True., the input matrix [A] cannot be
decomposed and there is no output returned; otherwise the profile A io returns the
decomposed matrix [L]. For the situation where NoGood o=.True., please see section 7.7.

7.3 Fortran Syntax for Subroutine Substitute

The following subroutines perform forward and backward substitutions. Syntax is as
follows:

Substitute DSG_4(A_i, N _i, Label i, X io)
Substitute DSG_8(A i, N_i, Label i, X io)
Substitute DSG_10(A_i, N _i, Label i, X io)
Substitute DSG_16(A_i, N i, Label i, X io)
Substitute DSG_Z4(A i, N_i, Label i, X io)
Substitute DSG_Z8(A i, N_i, Label i, X io)
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Substitute DSG_Z10(A i, N_i, Label i, X i0)
Substitute DSG_Z16(A i, N_i, Label i, X i0)

where

. The argument A i, array whose kind must be consistent with subroutine name convention, is

the profile of matrix [A] that inputs the result from decomposition.
The argument N_i, an INTEGER(4) variable, is the order of matrix [A].

. The argument Label i, an INTEGER(4) array, is the address reference label. For the

definition of address reference label, please see section 7.6.

. The argument X io, array whose kind must be consistent with subroutine name convention,

inputs the right side vector, and returns the solution.

7.4 Fortran Syntax for Subroutine Solution

The following subroutines first decompose matrix [A] into the product of [L][D]] L]T ,

and then perform forward and backward substitutions. Solve [A]{X}={B} in a single call. Syntax
is as follows:

Solution DSG 4(A io, N i, Label i, X io, NoGood o)
Solution DSG 8(A io, N i, Label i, X io, NoGood o)
Solution DSG_10(A_io, N_i, Label i, X io, NoGood 0)
Solution DSG_16(A_io, N_i, Label i, X io, NoGood 0)
Solution DSG_Z4(A io, N i, Label i, X io, NoGood o)
Solution DSG_Z8(A io, N i, Label i, X io, NoGood o)
Solution DSG_Z10(A_io, N i, Label i, X io, NoGood_o)
Solution DSG_Z16(A_io, N_i, Label i, X io, NoGood_o)

where

1.

The argument A _io, array whose kind must be consistent with subroutine name convention, is
the profile of matrix [A], that inputs the original matrix and returns the decomposed result if
the variable NoGood o is false. For the definition of profile, please see section 7.5.

The argument N_i, an INTEGER(4) variable, is the order of matrix [A].

. The argument Label i, an INTEGER(4) array, is the address reference label. For the

definition of address reference label, please see section 7.6.
The argument X io, array whose kind must be consistent with subroutine name convention,
inputs the right side vector, and returns the solution if NoGood o is false.

. The argument NoGood o, a LOGICAL(4) variable, is a flag that indicates if the input system

is suitable for the subroutine. If NoGood o=.True., the input system cannot be solved by the
subroutine and there is no output returned; otherwise the profile A io returns the decomposed
matrix [L], and vector X io returns the solution. For the situation where NoGood o=.True.,
please see section 7.7.

7.5 Profile

Profile for a dense and symmetric matrix is as:
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L SV,

* % k% (7.1}

* * * * *
i i i i i i

i i i i i i i

where the symbol * represents non-zero fill-ins. Total length of profile is determined as
profile size =( (N+1) *N ) /2 (7.2)

where N is the matrix order.

7.6 Data Storage Scheme

Data storage scheme for a dense and symmetric matrix must be declared in a Fortran
program, for example:

REAL (4) :: A(1,1)

where variable A here is a single precision profile for matrix [A]. For other kinds of variable,
profile must be properly declared. Then, replace the column index, for example j, with the

address reference label, for example Label(J). The coefficient Az‘j in the lower triangular part of

matrix [A] is programmed in a Fortran program as A(I,Label(J)). The address reference labels are
defined by the following algorithm where N is the order of matrix [A]:

(1) Set Label(1) =1
(2) Fori=2to N, do the following:
Label(i) = Label(i-1) + [ number of non-zero fill-ins in the i-th column ] (7.3)

For the example in form (7.1), the address reference labels are 1, 7, 12, 16, 19, 21, and 22.
Equation (7.2) computes 28 non-zero fill-ins that may be checked from the form (7.1).

7.7 Failure of Calling Request

If a calling request fails, solving procedure meets a diagonal coefficient whose absolute
value is very small and is negligible compared to unity.

The subroutines introduced in this chapter deal with symmetric systems without a
consideration of pivoting. Failure of request does not mean that the input matrix is absolutely
singular. A pivoting may continue execution. However, pivoting may destroy symmetry. A solver
with a pivoting usually does not consider symmetry. If pivoting is necessary, try a dense solver
with pivoting. A pivoting procedure always takes more time and is less efficient in parallel
processing.

7.8 Fortran Example
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For a given system [A]{X}={B}, the left side matrix [A] and the right side vector {B} are
defined as follows:

1 z1
4 5 Sym. 141
Z 29 4 Z

3 9 34 8 and =
12 23 3 23 45 333
4 2z 22 11 7 2 1

2 27 3 49 33 12 9 3

in which the order N=7. A Fortran program for decomposition and substitution is as follows.
Subroutines “Input” and “Output” have data storage scheme. Subroutine “DenseLabel” based on
equation (7.3) generates address reference labels. Subroutine “Decompose DSG 4” decomposes
matrix [A], and subroutine “Substitute DSG 4" performs forward and backward substitutions.

| #** Example program ***
! define variables where the length of A is determined by equation (7.2)

PARAMETER (N=7)
REAL*4 A((N+1)*N)/2),X(N)
INTEGER*4 Label(N)
LOGICAL*4 NoGood
DATA X/21.0,141.0,2.0,9.0,333.0,1.0,3.0/
! generate address reference labels
CALL DenseLabel(Label,N)
! input the lower triangular part of [A]
CALL Input(A,Label)
! decompose in parallel
CALL Decompose DSG_4(A,N,Label,NoGood)
! stop if NoGood=.True.
IF(NoGood) STOP 'Cannot be decomposed'

! perform substitutions in parallel

CALL Substitute DSG_4(A,N,Label,X)
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output decomposed matrix
CALL Output(A,N,Label)
output the solution

Write(*,'(" Solution is as:")")
Write(*,*) X

laipe done
call laipeDone

STOP
END
SUBROUTINE DenseLabel(Label,N)

routine to generate address reference labels for a dense lower triangular matrix
(A)FORTRAN CALL: CALL DenseLabel(Label,N)

1.Label: <I4> return the address reference labels, dimension(N)

2.N: <I4> order of matrix

dummy arguments

INTEGER*4 Label(1),N
local variables

INTEGER*4 I4ATEMP,JATEMP
generate address label

I4TEMP=N-1

Label(1)=1

DO JATEMP=2,N
Label(JATEMP)=Label(JATEMP-1)+I4TEMP
[4TEMP=I4TEMP-1

END DO

RETURN
END
SUBROUTINE Input(A,Label)

routine to demonstrate an application of data storage scheme
(A)FORTRAN CALL: CALL Input(A,Label)

1.A: <R4> profile of matrix [A], dimension(*)

2.Label: <I4> the address reference labels, dimension(N)

dummy arguments
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!
!
!

INTEGER*4 Label(1)
REAL*4 A(1,1)

input

A(1,Label(1))= 1.0
A(2,Label(1))= 4.0
A(3,Label(1))=2.0
A(4,Label(1))= 3.0
A(5,Label(1))=12.0
A(6,Label(1))= 4.0
A(7,Label(1))= 2.0
A(2,Label(2))= 5.0
A(3,Label(2))=29.0
A(4,Label(2))= 9.0
A(5,Label(2))=23.0
A(6,Label(2))= 2.0
A(7,Label(2))=27.0
A(3,Label(3))= 4.0
A(4,Label(3))=34.0
A(5,Label(3))= 3.0
A(6,Label(3))=22.0
A(7,Label(3))= 3.0
A(4,Label(4))= 8.0
A(5,Label(4))=23.0
A(6,Label(4))=11.0
A(7,Label(4))=49.0
A(5,Label(5))=45.0
A(6,Label(5))= 7.0
A(7,Label(5))=33.0
A(6,Label(6))= 2.0
A(7,Label(6))=12.0
A(7,Label(7))= 9.0

RETURN
END
SUBROUTINE Output(A,N,Label)

routine to output the decomposed matrix by data storage scheme
(A)FORTRAN CALL: CALL Output(A,N,Label)

1.A: <R4> profile of matrix [A], dimension(*)

2.N: <I4> order of matrix [A]

3.Label: <I4> address reference labels, dimension(N)

dummy arguments

INTEGER*4 N,Label(1)
REAL*4 A(1,1)
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! local variables
!

INTEGER*4 Column,Row,JI4TEMP
! output the coefficients on non-zero fill-ins

WRITE(*,'(" Row Column Coefficient")")
DO I4TEMP=1,N
Column=Label(I4TEMP)
DO Row=I4TEMP,N
WRITE(*,'(14,16,F9.3)") Row, I4ATEMP, A(Row,Column)
END DO
END DO

RETURN
END
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Chapter 8. Constant-Bandwidth and Asymmetric Systems

8.1 Purpose

This chapter has subroutines for the solution of [A]{X}={B} where the left side matrix [A]
is of constant bandwidth and asymmetric. There is no consideration of definiteness of matrix [A].
The non-zero fill-ins of matrix [A] have a shape, for example, as:

= +
o=+ o+
* = + +
¥ % % = 3 4
* % ® = 3 4
* * * = +
* * =

where the symbol "+" indicates non-zero fill-ins in the upper triangular part, and the symbol "="
indicates non-zero fill-ins on the diagonal, and the symbol "*" indicates non-zero fill-ins in the
lower triangular part. Matrix [A] has an upper bandwidth and a lower bandwidth. In this
example, the upper bandwidth is 2 and the lower bandwidth is 3.

Three types of subroutine are introduced in this chapter, which perform the following
functions:

1. Decompose matrix [A] into the product of [L][U] where matrix [L] is the lower triangular
matrix and matrix [U] is the upper triangular matrix.

2. Perform forward and backward substitutions.

3. Solve [A]{X}={B} in a single call.

Decomposition and substitution must be called in order, and work together as a pair. No
pivoting is applied to the subroutines, which are as follows:

Decompose CAG 4
Decompose CAG_8
Decompose CAG 10
Decompose CAG_16
Decompose CAG 74
Decompose CAG_Z8
Decompose CAG _Z10
Decompose CAG Z16

Substitute CAG 4

Substitute CAG_8
Substitute CAG_10
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The subroutines with a prefix "me", i.e., meSolution CAG 4, are multiple-entry direct
solvers that are most well suitable for systems with a small bandwidth. For more detailed
discussions on multiple-entry direct solvers, please see section 1.7.

Substitute CAG_16
Substitute CAG Z4
Substitute CAG_Z8
Substitute CAG_Z10
Substitute CAG_Z16

Solution CAG 4
Solution CAG_8§
Solution CAG_10
Solution CAG_16
Solution CAG_Z4
Solution CAG_Z8
Solution_ CAG_Z10
Solution CAG _Z16

meSolution CAG 4
meSolution CAG_8
meSolution CAG_10
meSolution CAG_16
meSolution CAG 74
meSolution CAG Z8
meSolution CAG_Z10
meSolution CAG_Z16

8.2 Fortran Syntax for Subroutine Decompose

The following subroutines decompose matrix [A] into [A]=[L][U]. Syntax is as follows:

where

1. The argument A_io, array whose kind must be consistent with subroutine name convention, is
the profile of matrix [A] that inputs the original matrix and returns the result if the variable
NoGood o is false. For the definition of profile, please see section 8.6.

2. The argument N_i, an INTEGER(4) variable, is the order of matrix [A].

3. The argument UpperBandwidth i, an INTEGER(4) variable, is the upper bandwidth of matrix
[A]. The upper bandwidth is the maximal number of non-zero fill-ins on the right side of
diagonal in a row.

Decompose CAG_4(A_io, N_i, UpperBandwidth i, LowerBandwidth i, NoGood o)
Decompose CAG_8(A_io, N_i, UpperBandwidth i, LowerBandwidth_i, NoGood o)
Decompose CAG_10(A_io, N_i, UpperBandwidth_i, LowerBandwidth i, NoGood o)
Decompose CAG_16(A_io, N_i, UpperBandwidth_i, LowerBandwidth i, NoGood o)
Decompose CAG_Z4(A io, N_i, UpperBandwidth_i, LowerBandwidth_i, NoGood o)
Decompose CAG_Z8(A _io, N i, UpperBandwidth_i, LowerBandwidth i, NoGood o)
Decompose CAG Z10(A io, N i, UpperBandwidth i, LowerBandwidth i, NoGood o)
Decompose CAG_Z16(A_io, N_i, UpperBandwidth_i, LowerBandwidth i, NoGood o)
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. The argument LowerBandwidth i, an INTEGER(4) variable, is the lower bandwidth of matrix

[A]. The lower bandwidth is the maximal number of non-zero fill-ins below the diagonal in a
column.

. The argument NoGood o, a LOGICAL(4) variable, is a flag that indicates if the input matrix

[A] is suitable for decomposition. If NoGood o=.True., the input matrix [A] cannot be
decomposed and there is no output returned; otherwise the profile A _io returns the
decomposed matrices [L] and [U]. For the situation where NoGood o=.True., please see
section 8.8.

8.3 Fortran Syntax for Subroutine Substitute

The following subroutines perform forward and backward substitutions. Syntax is as

follows:

Substitute CAG 4(A i, N i, UpperBandwidth i, LowerBandwidth i, X io)
Substitute CAG_8(A_i, N_i, UpperBandwidth i, LowerBandwidth i, X io)
Substitute CAG_10(A_i, N_i, UpperBandwidth_i, LowerBandwidth i, X io)
Substitute CAG_16(A_i, N_i, UpperBandwidth i, LowerBandwidth_i, X io)
Substitute CAG_Z4(A i, N_i, UpperBandwidth_i, LowerBandwidth i, X io)
Substitute CAG_Z8(A i, N _i, UpperBandwidth_i, LowerBandwidth i, X io)
Substitute CAG_Z10(A_i, N_1i, UpperBandwidth_i, LowerBandwidth i, X io)
Substitute CAG_Z16(A_i, N_i, UpperBandwidth_i, LowerBandwidth_i, X io)

where

1.

98]

The argument A_i, array whose kind must be consistent with subroutine name convention, is
the profile of matrix [A] that inputs the result from decomposition.
The argument N_i, an INTEGER(4) variable, is the order of matrix [A].

. The argument UpperBandwidth_i, an INTEGER(4) variable, is the upper bandwidth of matrix

[A]. The upper bandwidth is the maximal number of non-zero fill-ins on the right side of
diagonal in a row.

The argument LowerBandwidth_i, an INTEGER(4) variable, is the lower bandwidth of matrix
[A]. The lower bandwidth is the maximal number of non-zero fill-ins below the diagonal in a
column.

. The argument X io, array whose kind must be consistent with subroutine name convention,

inputs the right side vector, and returns the solution.

8.4 Fortran Syntax for Subroutine Solution

The following subroutines decompose matrix [A] into the product of [L][U], and perform

forward and backward substitutions. Solve [A]{X}={B} in a single call. The syntax is as
follows:

Solution CAG_4(A _io,N_i,UpperBandwidth_i,LowerBandwidth i,X io,NoGood o)
Solution CAG 8(A_io,N_i,UpperBandwidth i,LowerBandwidth i,X i0,NoGood 0)
Solution CAG _10(A _io,N _i,UpperBandwidth i,LowerBandwidth i,X io,NoGood 0)
Solution CAG_16(A _io,N _i,UpperBandwidth i,LowerBandwidth i,X io,NoGood o)
Solution CAG_Z4(A io,N_i,UpperBandwidth i,LowerBandwidth i,X io,NoGood o)
Solution CAG_Z8(A io,N_i,UpperBandwidth i,LowerBandwidth i,X i0,NoGood o)
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Solution CAG_Z10(A _io,N_i,UpperBandwidth i,LowerBandwidth i,X io,NoGood o)
Solution CAG _Z16(A _io,N i,UpperBandwidth i,LowerBandwidth i,X io,NoGood o)

where

1.

W

The argument A_io, array whose kind must be consistent with subroutine name convention, is
the profile of matrix [A], that inputs the original matrix and returns the decomposed result if
the variable NoGood o is false. For the definition of profile, please see section 8.6.

The argument N_i, an INTEGER(4) variable, is the order of matrix [A].

. The argument UpperBandwidth i, an INTEGER(4) variable, is the upper bandwidth of matrix

[A]. The upper bandwidth is the maximal number of non-zero fill-ins on the right side of
diagonal in a row.

The argument LowerBandwidth_i, an INTEGER(4) variable, is the lower bandwidth of matrix
[A]. The lower bandwidth is the maximal number of non-zero fill-ins below the diagonal in a
column.

. The argument X io, array whose kind must be consistent with subroutine name convention,

inputs the right side vector, and returns the solution if NoGood o is false.

The argument NoGood o, a LOGICAL(4) variable, is a flag that indicates if the input system
is suitable for the subroutine. If NoGood o=.True., the input system cannot be solved by the
subroutine and there is no output returned; otherwise the profile A _io returns the decomposed
matrices [L] and [U], and vector X io returns the solution. For the situation where
NoGood o=.True., please see section 8.8.

8.5 Fortran Syntax for Subroutine meSolution

The following subroutines solve [A][X]=[B] by a multiple entry procedure, where [X] and

[B] may be a matrix with multiple vectors, i.e., [X]=[{ Xl +{ X2 } ...] and [B]=[{ B1 14 32 }

...]. This subroutine is more efficient if the upper and lower bandwidths are small. The syntax is
as follows:

meSolution CAG_4(A_io, N_i, UpperBandwidth_i, LowerBandwidth i, &
X io, Nset i, WorkingSpace x, NoGood o)
meSolution CAG_8(A_io, N_i, UpperBandwidth_i, LowerBandwidth i, &
X io, Nset i, WorkingSpace x, NoGood o)
meSolution CAG_10(A _io, N_i, UpperBandwidth i, LowerBandwidth i,
X io, Nset i, WorkingSpace x, NoGood o)
meSolution CAG_16(A_io, N_i, UpperBandwidth i, LowerBandwidth i,
X io, Nset i, WorkingSpace x, NoGood_o0)
meSolution CAG_Z4(A io, N i, UpperBandwidth i, LowerBandwidth i,
X 1o, Nset_i, WorkingSpace x, NoGood o)
meSolution CAG_Z8(A io, N_i, UpperBandwidth i, LowerBandwidth i,
X io, Nset i, WorkingSpace x, NoGood o)
meSolution CAG_Z10(A_io, N_i, UpperBandwidth i, LowerBandwidth i, &
X io, Nset_i, WorkingSpace x, NoGood 0)
meSolution CAG_Z16(A_io, N _i, UpperBandwidth i, LowerBandwidth i, &
X io,Nset_i, WorkingSpace x, NoGood 0)

S

where
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1. The argument A_io, array whose kind must be consistent with subroutine name convention, is
the profile of matrix [A] that inputs the original matrix. After returning from this subroutine,
the content in array A_io is destroyed. For the definition of profile, please see section 8.6.

2. The argument N _i, an INTEGER(4) variable, is the order of matrix [A].

3. The argument UpperBandwidth i, an INTEGER(4) variable, is the upper bandwidth of matrix
[A]. The upper bandwidth is the maximal number of non-zero fill-ins on the right side of the
diagonal.

4. The argument LowerBandwidth_i, an INTEGER(4) variable, is the lower bandwidth of matrix
[A]. The lower bandwidth is the maximal number of non-zero fill-ins below the diagonal.

5. The argument X io, array whose kind must be consistent with subroutine name convention,
inputs the right side vector(s), and returns the solution if NoGood_O is false.

6. The argument Nset i, an INTEGER(4) variable, is the number of right side vectors.

7. The argument WorkingSpace x, array whose kind must be consistent with subroutine name
convention and providing a space of (N_i*(UpperBandwidth i+LowerBandwidth i))
elements, is a working space.

8. The argument NoGood o, a LOGICAL(4) variable, is a flag that indicates if the input matrix
[A] is suitable for the subroutine. If NoGood o=.True., the input system cannot be solved and
there is no output; otherwise the vector X io returns the solution. For the situation where
NoGood_o=.True., please see section 8.8.

8.6 Profile

Profile for a constant bandwidth and asymmetric matrix is as:

&
r & &
* % 0*
L R S
LI B T

o+
o+
+
+
+
+

(g.1)

where the symbol * represents non-zero fill-ins and the symbol & indicates an extra memory
space whose content is never used. Total length of profile is determined as

profile size = N * (UpperBandwidth + LowerBandwidth + 1) —LowerBandwidth ~ (8.2)

where N is the matrix order, and LowerBandwidth is the lower bandwidth, and UpperBandwidth
is the upper bandwidth.

8.7 Data Storage Scheme
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Data storage scheme for a constant bandwidth and asymmetric matrix must be declared in a
Fortran program, for example:

INTEGER (4) :: UpperBandwidth,LowerBandwidth
REAL (4) :: A(1-UpperBandwidth:LowerBandwidth,1)

where variable A, in this example, is a single precision profile for matrix [A]. For other kinds of

variable, profile must be properly declared. Then, the coefficient Aij of matrix [A] is

programmed in a Fortran program as A(I,J), no matter Aij is in the upper triangular part or in

the lower triangular part.
The non-zero fill-ins in the i-th column are from the beginning index as:
Maximum of ( 1, i - UpperBandwidth) (8.3)
to the ending index as:
Minimum of ( N, i + LowerBandwidth) (8.4)

where N is the order of matrix [A].

8. 8 Failure of Calling Request

If a calling request fails, solving procedure meets a diagonal coefficient whose absolute
value is very small and is negligible compared to unity.

Since the subroutines introduced in this chapter do not consider pivoting, failure of request
does not mean that the matrix is absolutely singular. A pivoting may continue execution.
However, pivoting may take more time. If a pivoting is necessary, try a corresponding solver
with partial pivoting.

8.9 Fortran Example

For a given system [A]{X}={B}, the left side matrix [A] and the right side vector {B} are
defined as follows:

1 = 21
4 Z5 4 11
Z Z9 14 5 1zz2
92 34 19 71 ancd 132
3 023 5 93 333

11 7 Z2 4 1

- | 3
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in which the order N=7, and the Ilower bandwidth LowerBandwidth=2, and the
UpperBandwidth=1. A Fortran program for decomposition and substitution is as follows.
Subroutines “Input” and “Output” have data storage scheme. Subroutine “Decompose CAG 4~
decomposes matrix [A], and subroutine “Substitute CAG 4" performs forward and backward
substitutions.

! #** Example program ***
! define variables where the length of A is determined by equation (8.2)

PARAMETER (N=7)
INTEGER*4 UpperBandwidth
PARAMETER (UpperBandwidth=1)
PARAMETER (LowerBandwidth=2)
REAL*4 A(N*(UpperBandwidth+LowerBandwidth+1)- LowerBandwidth)
REAL*4 X(N)
LOGICAL*4 NoGood
DATA X/21.0,11.0,122.0,19.0,333.0,1.0,3.0/
! input the non-zero fill-ins of matrix [A]
CALL Input(A,UpperBandwidth,LowerBandwidth)
! decompose in parallel
CALL Decompose CAG_4(A,N,UpperBandwidth, LowerBandwidth, NoGood)
! stop if NoGood=.True.
IF(NoGood) STOP 'Cannot be decomposed'
! perform substitutions in parallel
CALL Substitute CAG_4(A,N,UpperBandwidth, LowerBandwidth,X)
! output decomposed matrix
CALL Output(A,N,UpperBandwidth,LowerBandwidth)

! output the solution

Write(*,'(" Solution is as:")")
Write(*,*) X

! laipe done
call laipeDone

STOP
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END
SUBROUTINE Input(A,UpperBandwidth, LowerBandwidth)

routine to demonstrate an application of data storage scheme
(A)FORTRAN CALL: CALL Input(A,UpperBandwidth,LowerBandwidth)
1.A: <R4> profile of matrix [A], dimension(*)
2.UpperBandwidth: <I4> upper bandwidth
3.LowerBandwidth: <I4> lower bandwidth

dummy arguments

INTEGER*4 UpperBandwidth,LowerBandwidth
REAL*4 A(1-UpperBandwidth:LowerBandwidth,1)

! input

A(L,D= 1.0
AQ2,1)=4.0
AB,1)=2.0
A(1,2)=2.0
A(2,2)=25.0
A(3,2)=29.0
A(4,2)=99.0
A(2,3)=4.0
A(3,3)=14.0
A(4,3)=34.0
A(5,3)=3.0
A(3,4)=9.0
A(4,4)=19.0
A(5,4)=23.0
A(6,4)=11.0
A4,5)=71.0
A(5,5)=5.0
A(6,5)=17.0
A(7,5)=3.0
A(5,6)=93.0
A(6,6)=22.0
A(7,6)=2.0
A(6,7)= 4.0
A(7,7)=9.0

RETURN
END

SUBROUTINE Output(A,N,UpperBandwidth, LowerBandwidth)

routine to output the decomposed matrix by data storage scheme
(A)FORTRAN CALL: CALL Output(A,N,UpperBandwidth,LowerBandwidth)
1.A: <R4> profile of matrix [A], dimension(*)
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2.N: <I4> order of matrix [A]
3.UpperBandwidth: <I4> upper bandwidth
4.LowerBandwidth: <I4> lower bandwidth

dummy arguments

INTEGER*4 N,UpperBandwidth,LowerBandwidth
REAL*4 A(1-UpperBandwidth:LowerBandwidth,1)

local variables
INTEGER*4 Column,Row

output the coefficients on non-zero fill-ins. The beginning and ending row indices for each
column are defined in equation (8.3) and equation (8.4)

WRITE(*,'(" Row Column Coefficient")")
DO Column=1,N
DO Row=MAXO0(1,Column-UpperBandwidth), MINO(N,Column+LowerBandwidth)
WRITE(*,'(14,16,F9.3)") Row, Column, A(Row,Column)
END DO
END DO

RETURN
END
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Chapter 9. Variable-Bandwidth and Asymmetric Systems

9.1 Purpose

This chapter has subroutines for the solution of [A]{X}={B} where the left side matrix [A]
is of variable bandwidth and asymmetric. There is no consideration of definiteness of matrix [A].
The non-zero fill-ins in the left side matrix [A] have a shape, for example, as:

Three types of subroutine are introduced in the chapter, which perform the following
functions:

1. Decompose matrix [A] into the product of [L][U] where matrix [L] is the lower triangular
matrix and matrix [U] is the upper triangular matrix.

2. Perform forward and backward substitutions.

3. Solve [A]{X}={B} in a single call.

Decomposition and substitution must be called in order, and work together as a pair. No
pivoting is applied to the subroutines, which are as:

Decompose VAG 4
Decompose VAG 8
Decompose VAG 10
Decompose VAG 16
Decompose VAG Z4
Decompose VAG _Z8
Decompose VAG Z10
Decompose VAG Z16

Substitute VAG 4
Substitute VAG 8
Substitute VAG_10
Substitute VAG 16
Substitute VAG_Z4
Substitute VAG_Z8
Substitute VAG _Z10
Substitute VAG _Z16
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Solution VAG 4
Solution VAG 8
Solution VAG 10
Solution VAG_16
Solution VAG_Z4
Solution VAG_Z8
Solution VAG_Z10
Solution VAG_Z16

9.2 Fortran Syntax for Subroutine Decompose

The following subroutines decompose matrix [A] into [A]=[L][U]. Syntax is as follows:

Decompose VAG 4(A io, N i, Label i, Last i, NoGood 0)
Decompose VAG_8(A io, N i, Label i, Last i, NoGood o)
Decompose VAG_10(A_io, N_i, Label i, Last i, NoGood 0)
Decompose VAG_16(A_io, N_i, Label i, Last i, NoGood 0)
Decompose VAG_Z4(A_io, N i, Label i, Last_i, NoGood o)
Decompose VAG_Z8(A_io, N i, Label i, Last i, NoGood o)
Decompose VAG Z10(A io, N i, Label i, Last i, NoGood o)
Decompose VAG Z16(A io, N i, Label i, Last i, NoGood o)

where

1.

The argument A_io, array whose kind must be consistent with subroutine name convention, is
the profile of matrix [A] that inputs the original matrix and returns the result if the variable
NoGood_o is false. For the definition of profile, please see section 9.5.
The argument N_i, an INTEGER(4) variable, is the order of matrix [A].

. The argument Label i, an INTEGER(4) array, is the address reference label. For the

definition of address reference label, please see section 9.6.
The argument Last i, an INTEGER(4) array, is the last entry to each column in the profile.
For the definition of the last entry, please see section 9.6.

. The argument NoGood o, a LOGICAL(4) variable, is a flag that indicates if the input matrix

[A] is suitable for decomposition. If NoGood o=.True., the input matrix [A] cannot be
decomposed and there is no output returned; otherwise the profile A _io returns the
decomposed matrices [L] and [U]. For the situation where NoGood o=.True., please see
section 9.7.

9.3 Fortran Syntax for Subroutine Substitute

The following subroutines perform forward and backward substitutions. Syntax is as

follows:

Substitute VAG_4(A_i, N i, Label i, Last i, X io)
Substitute VAG_8(A_i, N_i, Label i, Last i, X io)
Substitute VAG_10(A_i, N_i, Label i, Last i, X io)
Substitute VAG_16(A_i, N_i, Label i, Last i, X io)
Substitute VAG_Z4(A i, N _i, Label i, Last i, X io)
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Substitute VAG Z8(A i, N i, Label i, Last i, X io)
Substitute VAG_Z10(A i, N_i, Label i, Last i, X io)
Substitute VAG Z16(A_i, N i, Label i, Last i, X io)

where

. The argument A i, array whose kind must be consistent with subroutine name convention, is

the profile of matrix [A] that inputs the result from decomposition.
The argument N_i, an INTEGER(4) variable, is the order of matrix [A].

. The argument Label i, an INTEGER(4) array, is the address reference label. For the

definition of address reference label, please see section 9.6.

. The argument Last i, an INTEGER(4) array, is the last entry of each column. For the

definition of the last entry, please see section 9.6.

. The argument X io, array whose kind must be consistent with subroutine name convention,

inputs the right side vector, and returns the solution.

9.4 Fortran Syntax for Subroutine Solution

The following subroutines first decompose matrix [A] into the product of [L][U], and then

perform forward and backward substitutions. Solve the system [A]{X}={B} in a single call.
Syntax is as follows:

Solution VAG 4(A io, N i, Label i, Last i, X io, NoGood o)
Solution VAG_8(A io, N i, Label i, Last i, X io, NoGood o)
Solution VAG 10(A_io, N i, Label i, Last i, X io, NoGood 0)
Solution VAG 16(A_io, N i, Label i, Last i, X io, NoGood 0)
Solution VAG Z4(A io, N i, Label i, Last i, X io, NoGood 0)
Solution VAG_Z8(A io, N i, Label i, Last i, X io, NoGood 0)
Solution VAG_Z10(A_io, N i, Label i, Last i, X io, NoGood o)
Solution VAG_Z16(A _io, N i, Label i, Last i, X io, NoGood o)

where

L.

W

The argument A _io, array whose kind must be consistent with subroutine name convention, is
the profile of matrix [A], that inputs the original matrix and returns the decomposed result if
the variable NoGood o is false. For the definition of profile, please see section 9.5.

The argument N _i, an INTEGER(4) variable, is the order of matrix [A].

. The argument Label i, an INTEGER(4) array, is the address reference label. For the

definition of address reference label, please see section 9.6.
The argument Last i, an INTEGER(4) array, is the last entry of column. For the definition of
the last entry, please see section 9.6.

. The argument X io, array whose kind must be consistent with subroutine name convention,

inputs the right side vector, and returns the solution if NoGood o is false.

. The argument NoGood o, a LOGICAL(4) variable, is a flag that indicates if the input system

is suitable for the subroutine. If NoGood o=.True., the input system cannot be solved and
there is no output returned; otherwise the profile A io returns the decomposed matrices [L]
and [U], and vector X io returns the solution. For the situation where NoGood o=.True.,
please see section 9.7.
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9.5 Profile

Profile for variable bandwidth and asymmetric matrix is more complex than the other ones
discussed in the previous chapters, and requires some extra memory spaces in the lower
triangular part. The profile for the upper triangular part simply hinges on the non-zero fill-ins.
Before discussing profile for the lower triangular part of matrix [A], let us examine two
variables, Beginning(l) and Ending(l). Beginning(l) is the row index of the first non-zero fill-in
in the i-th column and Ending(l) is the row index of the last non-zero fill-in in the i-th column.
Then, the last entry, denoted by Last, is defined as:

1 Set Last(1) = Ending(1)
2. For =2 to N, do the following
Last(I) = Maximum of (Last(I-1),Ending(I)) ©.1)

The Beginning and Last indices define the profile of an asymmetric and variable bandwidth
matrix. The address reference label is then defined as:

1. Set Label(1) =1
2. For =2 to N, do the following
Label(I) = Label(I-1) + Last(I-1) -Beginning(I) + 1 9.2)

The required length of profile is written as:
profile size = Label(N)-1+ N 9.3)

where N is the matrix order, and Label(N) is the address reference label for the N-th column. For
example, if a sparse matrix is written as follows.

* * * * * ig_q]
i i i W W

i i i W W

* * *

where the symbol * represents a non-zero fill-in. Then, the beginning indices are 1, 1, 2, 3, 2, 5,
and 4, and the ending indices are 3, 4, 7, 6, 6, 7, and 7. Then, the last entries determined by
equation (9.1) are 3, 4, 7, 7, 7, 7, and 7. The beginning and last indices define the profile which
may be written as

= = = = = |:9.5:|
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where the symbol = indicates an entry to the profile. The address reference labels are 1, 4, 7, 12,
18, 21, and 25. Equation (9.3) computes that the profile size is 31, which may be checked from
the form (9.5).

For a variable-bandwidth and asymmetric matrix, the profile size is usually greater than the
number of non-zero fill-ins. Comparing form (9.4) with form (9.5) finds that the profile has two
more elements, A(7,4) and A(7,5). It must initialize the extra memory space in the profile, i.e.,
A(7,4)=0 and A(7,5)=0, before calling any of the following subroutines:

Decompose VAG 4
Decompose VAG 8
Decompose VAG 10
Decompose VAG 16
Decompose VAG Z4
Decompose VAG Z8
Decompose VAG Z10
Decompose VAG Z16

Solution VAG 4
Solution VAG 8
Solution VAG 10
Solution VAG_16
Solution VAG_Z4
Solution VAG_Z8
Solution VAG_Z10
Solution VAG Z16

9.6 Data Storage Scheme

Data storage scheme for a variable-bandwidth and asymmetric matrix must be declared in a
Fortran program, for example:

REAL (4) :: A(1,1)

where variable A, in this example, is a single precision profile for matrix [A]. For other kinds of
variable, profile must be properly declared. Then, replace the column index, for example j, with

the address reference label, for example Label(J). The coefficient Az’j of matrix [A] is
programmed in a Fortran program as A(I,Label(J)).

The previous section introduces the beginning and ending indices, the address reference
label, and the last entry for a profile. In practical calling convention, only the address reference
label and the /ast entry are required. The address reference label and last entry then determine
the beginning index. In the i-th column, from equation (9.2) the beginning index is determined as:

Label(I-1) + Last(I-1) - Label(I) + 1 (9.6)

9.7 Failure of Calling Request
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If a calling request fails, solving procedure meets a diagonal coefficient whose absolute
value is very small and is negligible compared to unity.

Since the subroutines introduced in this chapter do not consider pivoting, failure of request
does not mean that the input matrix is absolutely singular. A pivoting may continue execution.
However, a pivoting may destroy sparsity. If a pivoting is necessary, try a constant bandwidth
solver with partial pivoting or a dense solver with pivoting.

9.8 Fortran Example

For a given system [A]{X}={B}, the left side matrix [A] and the right side vector {B} are
defined as follows:

1 4 5
5 25 29 32 41
2 13 1 34 17 12
¢4 5 8 EZ3 = and 3
T3 85 37 3 303
2 Z2 6 E zZ 21
11 1 1 23

in which the order N=7. A Fortran program for decomposition and substitution is as follows.
Subroutines “Input” and “Output” have data storage scheme. Subroutine “Decompose VAG 4”
decomposes matrix [A], and subroutine “Substitute VAG_ 4 performs forward and backward
substitutions.

! #** Example program ***
! define variables where the length of A is determined by equation (9.3),
! Equation (9.1), and the address reference define the last entry
! label is defined by equation(9.2)
!

PARAMETER (N=7)

REAL*4 A(31),X(N)

INTEGER*4 Label(N),Last(N)

LOGICAL*4 NoGood

DATA X/5.0,41.0,12.0,9.0,303.0,21.0,23.0/

DATA Label/1,4,7,12,18,21,25/

DATA Last/3,4,7,7,7,7,7/

! input matrix [A]
CALL Input(A,Label,Last,N)
! decompose in parallel

CALL Decompose VAG 4(A,N,Label,Last,NoGood)
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stop if NoGood=.True.

IF(NoGood) STOP 'Cannot be decomposed'
perform substitutions in parallel

CALL Substitute VAG_4(A,N,Label,Last,X)
output decomposed matrix

CALL Output(A,N,Label,Last)
output the solution

Write(*,'(" Solution is as:")")
Write(*,*) X

laipe done
call laipeDone

STOP
END
SUBROUTINE Input(A,Label,Last,N)

routine to demonstrate an application of data storage scheme
(A)FORTRAN CALL: CALL Input(A,Label,Last,N)
1.A: <R4> profile of matrix [A], dimension(*)
2.Label: <I4> address reference labels, dimension(*)
3.Last: <I4> the last entry to each column, dimension(*)
4.N: <I4> order of matrix [A]

dummy arguments

INTEGER*4 Label(1),Last(1),N
REAL*4 A(1,1)

local variable
INTEGER*4 I4TEMP
initialization where the length of profile is determined by equation (9.3)
DO I4TEMP=1,Label(N)-1+N
A(4TEMP,1)=0.0
END DO
input

A(1,Label(1))= 1.0
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A(2,Label(1))=5.0
A(3,Label(1))=9.0
A(1,Label(2))=4.0
A(2,Label(2))=25.0
A(3,Label(2))=13.0
A(4,Label(2))=4.0
A(2,Label(3))=29.0
A(3,Label(3))= 1.0
A(4,Label(3))=5.0
A(5,Label(3))="7.0
A(6,Label(3))=2.0
A(7,Label(3))=11.0
A(3,Label(4))=34.0
A(4,Label(4))=9.0
A(5,Label(4))=3.0
A(6,Label(4))=22.0
A(2,Label(5))=32.0
A(3,Label(5))=17.0
A(4,Label(5))=23.0
A(5,Label(5))= 8.0
A(6,Label(5))= 6.0
A(5,Label(6))=37.0
A(6,Label(6))=2.0
A(7,Label(6))=1.0
A(4,Label(7))=9.0
A(5,Label(7))= 3.0
A(6,Label(7))= 2.0
A(7,Label(7))=1.0

RETURN
END
SUBROUTINE Output(A,N,Label,Last)

routine to output the decomposed matrix by data storage scheme
(A)FORTRAN CALL: CALL Output(A,N,Label,Last)

1.A: <R4> profile of matrix [A], dimension(*)

2.N: <I4> order of matrix [A]

3.Label: <I4> address reference labels, dimension(*)

4.Last: <I4> the last entry to each column, dimension(*)

dummy arguments

INTEGER*4 N,Label(1),Last(1)
REAL*4 A(1,1)

! local variables

INTEGER*4 IATEMP,Column,Row

! output the coefficients on non-zero fill-ins where the beginning index is
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! computed by equation (9.6)
!
WRITE(*,'(" Row Column Coefficient")")
DO I4TEMP=1,N
Column=Label(I4TEMP)
DO Row=Label(I4TEMP-1)+Last(I4TEMP-1)- Column+1, Last(I4TEMP)
WRITE(*,'(14,16,F9.3)") Row,I4TEMP, A(Row,Column)
END DO
END DO

RETURN
END
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Chapter 10. Dense and Asymmetric Systems

10.1 Purpose

This chapter has subroutines for the solution of [A]{X}={B} where the left side matrix [A]
is dense and asymmetric. There is no consideration of definiteness of matrix [A]. The non-zero
fill-ins of matrix [A] have a simple shape, for example, as:

where the symbol * indicates non-zero fill-ins. Three types of subroutine are introduced in the
chapter, which perform the following functions:

1. Decompose matrix [A] into the product of [L][U] where matrix [L] is the lower triangular
matrix and matrix [U] is the upper triangular matrix.

2. Perform forward and backward substitutions.

3. Solve [A]{X}={B} in a single call.

Decomposition and substitution must be called in order, and work together as a pair. No
pivoting is applied to the subroutines introduced in this chapter. The subroutines are as follows:

Decompose DAG 4
Decompose DAG 8
Decompose DAG 10
Decompose DAG 16
Decompose DAG _Z4
Decompose DAG_Z8
Decompose DAG Z10
Decompose DAG Z16

Substitute DAG 4
Substitute DAG 8
Substitute DAG_10
Substitute DAG_16
Substitute DAG_Z4
Substitute DAG_Z8
Substitute DAG Z10
Substitute DAG _Z16
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Solution DAG 4
Solution DAG 8
Solution DAG_10
Solution DAG 16
Solution DAG_Z4
Solution DAG_Z8
Solution DAG_Z10
Solution DAG Z16

10.2 Fortran Syntax for Subroutine Decompose

The following subroutines decompose matrix [A] into [A]=[L][U]. Syntax is as follows:

Decompose DAG 4(A _io, N i, NoGood 0)
Decompose DAG 8(A io, N i, NoGood 0)
Decompose DAG_10(A_io, N_i, NoGood_o)
Decompose DAG_16(A_io, N_i, NoGood_o)
Decompose DAG_Z4(A_io, N_i, NoGood o)
Decompose DAG_Z8(A_io, N_i, NoGood_o)
Decompose DAG_Z10(A _io, N i, NoGood 0)
Decompose DAG Z16(A io, N i, NoGood 0)

where

1. The argument A_io, array whose kind must be consistent with subroutine name convention, is
the profile of matrix [A] that inputs the original matrix and returns the result if the variable
NoGood o is false. For the definition of profile, please see section 10.5.

2. The argument N i, an INTEGER(4) variable, is the order of matrix [A].

3. The argument NoGood o, a LOGICAL(4) variable, is a flag that indicates if the input matrix
[A] is suitable for the subroutine. If NoGood o=.True., the input matrix [A] cannot be
decomposed and there is no output returned; otherwise the profile A io returns the
decomposed matrices [L] and [U]. For the situation where NoGood o=.True., please see
section 10.7.

10.3 Fortran Syntax for Subroutine Substitute

The following subroutines perform forward and backward substitutions. Syntax is as
follows:

Substitute DAG _4(A i, N _i, X io)
Substitute DAG _8(A i, N i, X io)
Substitute DAG _10(A_i, N i, X io0)
Substitute DAG_16(A_i, N i, X io0)
Substitute DAG Z4(A i, N i, X i0)
Substitute DAG_Z8(A i, N_i, X i0)
Substitute DAG_Z10(A i, N_i, X io)
Substitute DAG_Z16(A i, N_i, X io)

where
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. The argument A_i, array whose kind must be consistent with subroutine name convention, is

the profile of matrix [A] that inputs the result from decomposition.

The argument N_i, an INTEGER(4) variable, is the order of matrix [A].

The argument X io, array whose kind must be consistent with subroutine name convention,
inputs the right side vector, and returns the solution.

10.4 Fortran Syntax for Subroutine Solution

The following subroutines first decompose matrix [A] into the product of [L][U], and then

perform forward and backward substitutions. Solve [A]{X}={B} in a single call. The syntax is as

follows:
Solution DAG 4(A io, N i, X io, NoGood 0)
Solution DAG 8(A io, N i, X io, NoGood 0)
Solution DAG_10(A_io, N_i, X _io, NoGood o)
Solution DAG_16(A_io, N_i, X _io, NoGood o)
Solution DAG_Z4(A io, N _i, X _io, NoGood_o)
Solution DAG Z8(A io, N i, X io, NoGood 0)
Solution DAG Z10(A _io, N_i, X io, NoGood o)
Solution DAG Z16(A _io, N_i, X io, NoGood o)
where
1. The argument A_io, array whose kind must be consistent with subroutine name convention, is
the profile of matrix [A], that inputs the original matrix and returns the decomposed result if
the variable NoGood o is false. For the definition of profile, please see section 10.5.
2. The argument N i, an INTEGER(4) variable, is the order of matrix [A].
3. The argument X io, array whose kind must be consistent with subroutine name convention,
inputs the right side vector, and returns the solution if NoGood o is false.
4. The argument NoGood_o, a LOGICAL(4) variable, is a flag that indicates if the input system

is suitable for the subroutine. If NoGood o=.True., the input system cannot be solved by the
subroutine and there is no output returned; otherwise the profile A io returns the decomposed
matrices [L] and [U], and vector X io returns the solution. For the situation where
NoGood o=.True., please see section 10.7.

10.5 Profile

Profile for a dense and asymmetric matrix is the simplest as:

* % * % *® % 0% (10.1)
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where the symbol - represents non-zero fill-ins. Total length of profile is determined as
profile size =N * N (10.2)

where N is the matrix order.

10.6 Data Storage Scheme

Data storage scheme for a dense and asymmetric matrix must be declared in a Fortran
program, for example:

REAL (4) :: A(N,N)

where variable A here is a single precision profile for matrix [A], and N is the matrix order. For
other kinds of variable, profile must be properly declared. Then, the coefficient Aij of matrix

[A] is simply programmed in a Fortran program as A(L,J).

10.7 Failure of Calling Request

If a calling request fails, solving procedure meets a diagonal coefficient whose absolute
value is very small and is negligible compared to unity.

Since the subroutines introduced in this chapter do not consider pivoting, failure of request
does not mean that the input matrix is absolutely singular. A pivoting may continue execution.
However, pivoting always takes more time. If a pivoting is necessary, try a dense solver with
partial or full pivoting.

10.8 Fortran Example

For a given system [A]{X}={B}, the left side matrix [A] and the right side vector {B} are
defined as follows:

1 2 13 17 32 47 & z1
4 5 3 5 0 0O =& 141
£ 294 7 11 5 4 2

3 9 34 8 33 14 3 and =
12 23 3 23 45 -1 2 333
4 2 22 117 2 1 1

2 27 3 4% 33 12 9 3

in which the order N=7. A Fortran program for decomposition and substitution is as follows.
Subroutines “Input” and “Output” have data storage scheme. Subroutine “Decompose DAG 4”
decomposes matrix [A], and subroutine “Substitute DAG 4" performs forward and backward
substitutions.
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| *** Example program ***
! define variables where the length of A is determined by equation (10.2)

PARAMETER (N=7)

REAL*4 A(N,N),X(N)

LOGICAL*4 NoGood

DATA X/21.0,141.0,2.0,9.0,333.0,1.0,3.0/
: input matrix [A]

CALL Input(A,N)

! decompose in parallel

CALL Decompose DAG 4(A,N,NoGood)
: stop if NoGood=.True.

IF(NoGood) STOP 'Cannot be decomposed'
! perform substitutions in parallel

CALL Substitute DAG_4(A,N,X)

! output decomposed matrix

CALL Output(A,N)

! output the solution

Write(*,'(" Solution is as:")")
Write(*,*) X

! laipe done
call laipeDone
STOP

END
SUBROUTINE Input(A,N)

! routine to demonstrate an application of data storage scheme
! (A)FORTRAN CALL: CALL Input(A,N)

1.A: <R4> profile of matrix [A], dimension(N,N)

2.N: <I4> the order of matrix [A]

! dummy arguments

INTEGER*4 N
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REAL*4 A(N,N)
! first column

A(L,D=1.0
AQ2,1)=4.0
AG3,1)=2.0
A4,1)=3.0
A(,1)=12.0
A(6,1)=4.0
A(7,1)=2.0

! second column

A(1,2)=2.0
A(2,2)=5.0
A(3,2)=29.0
A(4,2)=9.0
A(5,2)=23.0
A(6,2)=2.0
A(7,2)=27.0

! third column

A(1,3)=13.0
A(2,3)=3.0
A(3,3)=4.0
A(4,3)=34.0
A(5,3)=3.0
A(6,3)=22.0
A(7,3)=3.0

! fourth column

A(1,4)=17.0
AQ2,4)=5.0
A(34)=17.0
A(4,4)=8.0
A(5,4)=23.0
A(6,4)=11.0
A(7,4)=49.0

! fifth column

A(1,5)=32.0
A(2,5)=0.0
A(3,5)=11.0
A(4,5)=33.0
A(5,5)=45.0
A(6,5)=17.0
A(7,5)=33.0



|

|

|

|

! sixth column

A(1,6)=47.0
A(2,6)= 0.0
A(3,6)=5.0
A(4,6)=14.0
A(5,6)=-1.0
A(6,6)=2.0
A(7,6)=12.0

! seventh column

A(1,7)= 6.0
AQ2,7)= 6.0
A(3,7)=4.0
A(4,7)=3.0
A(5,7)=2.0
A(6,7)= 1.0
A(7,7)=9.0

RETURN
END
SUBROUTINE Output(A,N)

routine to output the decomposed matrix by data storage scheme
(A)FORTRAN CALL: CALL Output(A,N)

1.A: <R4> profile of matrix [A], dimension(*)

2.N: <I4> order of matrix [A]

dummy arguments

INTEGER*4 N
REAL*4 A(N,N)

! local variables

INTEGER*4 Column,Row
output the coefficients on non-zero fill-ins

WRITE(*,'(" Row Column Coefficient")")
DO Column=1,N
DO Row=1,N
WRITE(*,'(14,16,F9.3)") Row,Column, A(Row,Column)
END DO
END DO

RETURN
END
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Chapter 11.  Constant-Bandwidth and Asymmetric Solvers
with Partial Pivoting

11.1 Purpose

This chapter has subroutines for the solution of [A]{X}={B} with partial pivoting where the
left side matrix [A] has a constant bandwidth and is asymmetric. There is no consideration of
definiteness of matrix [A]. The non-zero fill-ins of matrix [A] have a shape, for example, as:

= +
¥ o= 4+ 4+
¥ ooF =+ 4
* % % = 4 4
* % % = 4 4
* % = 4
*F ¥ ¥ =

where the symbol "+" indicates non-zero fill-ins in the upper triangular part, and the symbol "="
indicates non-zero fill-ins on the diagonal, and the symbol "*" indicates non-zero fill-ins in the
lower triangular part. Matrix [A] has an upper bandwidth and a lower bandwidth. In the above
example, the upper bandwidth is two and the lower bandwidth is three.

Three types of subroutine are introduced in this chapter, which perform the following
functions:

1. Decompose matrix [A] into the product of [L][U] where matrix [L] is the lower triangular
matrix and matrix [U] is the upper triangular matrix.

2. Perform forward and backward substitutions.

3. Solve [A]{X}={B} in a single call.

Decomposition and substitution must be called in order, and work together as a pair. The
subroutines are as:

ppDecompose CAG 4
ppDecompose CAG 8
ppDecompose CAG 10
ppDecompose CAG 16
ppDecompose CAG 74
ppDecompose CAG Z8
ppDecompose CAG_Z10
ppDecompose CAG _Z16

ppSubstitute CAG_4
ppSubstitute CAG_8
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ppSubstitute CAG 10
ppSubstitute CAG_16
ppSubstitute CAG_Z4
ppSubstitute CAG Z8
ppSubstitute CAG_Z10
ppSubstitute CAG_Z16

ppSolution CAG 4
ppSolution CAG_8
ppSolution CAG 10
ppSolution CAG 16
ppSolution CAG_Z4
ppSolution CAG 78
ppSolution CAG Z10
ppSolution CAG Z16

11.2 Fortran Syntax for Subroutine ppDecompose

The following subroutines decompose matrix [A] into [A]=[L][U] with partial pivoting.

Syntax is as follows:

ppDecompose CAG 4(A_io, N_i, UpperBandwidth i, LowerBandwidth i, &
From_o, First 0, NoGood 0)
ppDecompose CAG 8(A_io, N_i, UpperBandwidth i, LowerBandwidth i, &
From o, First 0, NoGood 0)
ppDecompose CAG _10(A_io, N_1i, UpperBandwidth i, LowerBandwidth i,
From o, First o, NoGood o)
ppDecompose CAG_16(A _io, N _i, UpperBandwidth i, LowerBandwidth i,
From_o, First_o, NoGood 0)
ppDecompose CAG Z4(A io, N i, UpperBandwidth_i, LowerBandwidth i,
From_o, First_o, NoGood 0)
ppDecompose CAG Z8(A_io, N i, UpperBandwidth i, LowerBandwidth i,
From o, First o, NoGood o)
ppDecompose CAG Z10(A io, N_i, UpperBandwidth i, LowerBandwidth i, &
From_o, First 0, NoGood 0)
ppDecompose CAG Z16(A io, N _i, UpperBandwidth i, LowerBandwidth i, &
From_o, First 0o, NoGood 0)

S T S

where

1.

The argument A_io, array whose kind must be consistent with subroutine name convention, is
the profile of matrix [A] that inputs the original matrix and returns the result if the variable
NoGood_o is false. For the definition of profile, please see section 11.5.
The argument N _i, an INTEGER(4) variable, is the order of matrix [A].

. The argument UpperBandwidth i, an INTEGER(4) variable, is the upper bandwidth of matrix

[A]. The upper bandwidth is the maximal number of non-zero fill-ins on the right side of
diagonal in a row.

. The argument LowerBandwidth i, an INTEGER(4) variable, is the lower bandwidth of matrix

[A]. The lower bandwidth is the maximal number of non-zero fill-ins below the diagonal in a
column.
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. The argument From o, an INTEGER(4) array having N i elements, returns the row index

where the remaining elements in a row are from if NoGood o is false.

. The argument First o, an INTEGER(4) array having N i elements, returns the index of the

first non-zero fill-in on each column if NoGood o is false.

The argument NoGood o, a LOGICAL(4) variable, is a flag that indicates if the input matrix
[A] is suitable for the subroutine. If NoGood o=.True., the input matrix [A] cannot be
decomposed and there is no output returned; otherwise the profile A io returns the
decomposed matrices [L] and [U]. For the situation where NoGood o=.True., please see
section 11.7.

11.3 Fortran Syntax for Subroutine ppSubstitute

This subroutine performs forward and backward substitutions. Syntax is as follows:

ppSubstitute CAG 4(A i, N i, UpperBandwidth i, LowerBandwidth i, &
From i, First i, X io0)
ppSubstitute CAG_8(A i, N_i, UpperBandwidth_i, LowerBandwidth i, &
From i, First i,X io)
ppSubstitute CAG_10(A_i, N_i, UpperBandwidth_i, LowerBandwidth i, &
From i, First i, X io)
ppSubstitute CAG_16(A_i, N_i, UpperBandwidth_i, LowerBandwidth i, &
From_i, First i, X io0)
ppSubstitute CAG Z4(A i, N_i, UpperBandwidth i, LowerBandwidth i, &
From i, First i, X io0)
ppSubstitute CAG Z8(A i, N_i, UpperBandwidth i, LowerBandwidth i, &
From i, First i, X io0)
ppSubstitute CAG Z10(A i, N i, UpperBandwidth i, LowerBandwidth i, &
From i, First i, X io)
ppSubstitute CAG_Z16(A i, N_i, UpperBandwidth_i, LowerBandwidth i, &
From i, First i, X io)

where

L.

2.
3.

The argument A i, array whose kind must be consistent with subroutine name convention, is
the profile of matrix [A] that inputs the result from decomposition.

The argument N_i, an INTEGER(4) variable, is the order of matrix [A].

The argument UpperBandwidth i, an INTEGER(4) variable, is the upper bandwidth of matrix
[A]. The upper bandwidth is the maximal number of non-zero fill-ins on the right side of
diagonal in a row.

The argument LowerBandwidth i, an INTEGER(4) variable, is the lower bandwidth of matrix
[A]. The lower bandwidth is the maximal number of non-zero fill-ins below the diagonal in a
column.

. The argument From i, an INTEGER(4) array having N i elements, inputs the row index

where the remaining coefficients on a row are from.
The argument First i, an INTEGER(4) array having N _i elements, inputs the index of the first
nonzero fill-in on each column from.

. The argument X io, array whose kind must be consistent with subroutine name convention,

inputs the right side vector, and returns the solution.
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11.4 Fortran Syntax for Subroutine ppSolution

The following subroutines first decompose matrix [A] into the product of [L][U] with

partial pivoting, and then perform forward and backward substitutions. Solve [A]{X}={B} in a
single call. Syntax is as follows:

ppSolution CAG 4(A _io, N_i, UpperBandwidth i, LowerBandwidth i, &
From_x, First x, X io, NoGood 0)
ppSolution CAG_8(A _io, N_i, UpperBandwidth i, LowerBandwidth i, &
From_x, First x, X io, NoGood o)
ppSolution CAG_10(A _io, N_i, UpperBandwidth i, LowerBandwidth i,
From_ x, First x, X io, NoGood 0)
ppSolution CAG_16(A _io, N_i, UpperBandwidth i, LowerBandwidth i,
From_x, First x, X i0, NoGood o)
ppSolution CAG_Z4(A io, N_i, UpperBandwidth_i, LowerBandwidth i,
From_x, First x, X i0, NoGood 0)
ppSolution CAG_Z8(A io, N_i, UpperBandwidth i, LowerBandwidth i,
From_x, First x, X io, NoGood_o0)
ppSolution CAG Z10(A _io, N_i, UpperBandwidth i, LowerBandwidth i, &
From_x, First x, X io, NoGood o)
ppSolution CAG_Z16(A _io, N_i, UpperBandwidth i, LowerBandwidth i, &
From_x, First x, X io, NoGood_0)

2o ) & &

where

1.

98]

SN

The argument A _io, array whose kind must be consistent with subroutine name convention, is
the profile of matrix [A], that inputs the original matrix and returns the decomposed result if
the variable NoGood o is false. For the definition of profile, please see section 11.5.

The argument N_i, an INTEGER(4) variable, is the order of matrix [A].

The argument UpperBandwidth i, an INTEGER(4) variable, is the upper bandwidth of matrix
[A]. The upper bandwidth is the maximal number of non-zero fill-ins on the right side of
diagonal in a row.

The argument LowerBandwidth_i, an INTEGER(4) variable, is the lower bandwidth of matrix
[A]. The lower bandwidth is the maximal number of non-zero fill-ins below the diagonal in a
column.

The argument From_x, an INTEGER(4) array having N _i elements, is a working array.

The argument First x, an INTEGER(4) array having N _i elements, is a working array.

The argument X io, array whose kind must be consistent with subroutine name convention,
inputs the right side vector, and returns the solution if NoGood_o is false.

. The argument NoGood o, a LOGICAL(4) variable, is a flag indicating if the input system is

suitable for the subroutine. If NoGood o=.True., the input system cannot be solved by the
subroutine and there is no output returned; otherwise the profile A _io returns the decomposed
matrices [L] and [U], and vector X io returns the solution. For the situation where
NoGood_o=.True., please see section 11.7.

11.5 Profile

Similar to profile of variable-bandwidth and asymmetric solver, profile for constant-

bandwidth and asymmetric solver with partial pivoting requires extra memory spaces for
decomposition. Consider a constant-bandwidth and asymmetric matrix as follows:
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*

®* % = 4 [11.1)

where the symbol "+" indicates non-zero fill-ins in the upper triangular part, and the symbol "="
indicates non-zero fill-ins on the diagonal, and the symbol "*" indicates non-zero fill-ins in the
lower triangular part. For the matrix in the form of (11.1), the upper bandwidth=1, and the lower
bandwidth is 2. The profile for the lower triangular part is defined by the non-zero fill-ins in the
lower triangular part, but the profile for the upper triangular part requires extra memory spaces.
The upper bandwidth enlarges by adding the lower bandwidth, and the profile for the form (11.1)
is written as follows:

1
* # &\ e
e

+ # I 4+ & o=
ey

e

(11.2)

# % I 4+ & &

E I N I R

O

[~y B | SR
4+ &

There are five symbols in the profile, each of which is discussed in the following:

The symbol "+" represents non-zero fill-ins in the upper triangular part of the original matrix.
The symbol "=" represents non-zero fill-ins on the diagonal of the original matrix.

The symbol "*" represents non-zero fill-ins in the lower triangular part of the original matrix.
The symbol % represents extra memory space in the profile. All the extra space must be
initialized to zero before calling any of the following subroutines

el S

ppDecompose CAG 4
ppDecompose CAG 8
ppDecompose CAG 10
ppDecompose CAG 16
ppDecompose CAG 74
ppDecompose CAG_Z8
ppDecompose CAG_Z10
ppDecompose CAG_Z16

ppSolution CAG 4
ppSolution CAG_8
ppSolution CAG 10
ppSolution CAG 16
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ppSolution CAG_Z4
ppSolution CAG_Z8
ppSolution CAG Z10
ppSolution CAG Z16

Each extra space denoted by the symbol % returns a coefficient after decomposition.
5. The symbol & indicates an extra memory space whose content is never used.
Total length of profile is determined as
profile size = N * (UpperBandwidth + LowerBandwidth * 2 + 1) — LowerBandwidth  (11.3)

where N is the matrix order, and the variable LowerBandwidth is the lower bandwidth of the
original matrix before decomposition, and UpperBandwidth is the upper bandwidth of the
original matrix before decomposition.

11.6 Data Storage Scheme

Data storage scheme for a constant-bandwidth and asymmetric solver with partial pivoting
must be declared in a Fortran program, for example:

INTEGER (4) :: Upper,Lower
REAL (4) :: A(1-Upper-Lower:Lower,1)

where variable A here is a single precision profile for matrix [A], and variable "Upper" is the
upper bandwidth of the original matrix, and variable "Lower" is the lower bandwidth of the
original matrix. For other kinds of variable, profile must be properly declared. Then, the

coefficient Aij of matrix [A] is programmed in a Fortran program as A(L,J), no matter Aij is in

the upper triangular part or in the lower triangular part

"Before decomposition", the non-zero fill-ins in the i-th column are from the beginning
index:

Maximum of (1,i-Upper) (11.4)
to the ending index:
Minimum of (N,i+Lower) (11.5)

where N is the order of matrix [A]. After decomposition, the bandwidth in the upper triangular
part has enlarged, and the beginning index in the i-th column becomes

Maximum of (1,i-Upper-Lower). (11.6)
In equations (11.4), (11.5), and (11.6), the variable "Upper" is the upper bandwidth of the

original matrix before decomposition, and the variable "Lower" is the lower bandwidth of the
original matrix before decomposition.
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11.7 Failure of Calling Request

If the calling request fails, solving procedure cannot find a pivoting row such that the
absolute value of the diagonal element is not negligible compared to unity.

11.8 Fortran Example

For a given system [A]{X}={B}, the left side matrix [A] and the right side vector {B} are
defined as follows:

1 =z 21
4 Z5 4 11
Z Z9 14 = 122
99 34 19 71 and 19
3 23 5 923 333
11 7 22 4 1
3 02 9 3

in which the order N=7, and the lower bandwidth LowerBandwidth=2, and the
UpperBandwidth=1. A Fortran program for decomposition and substitution is as follows. There
are four subroutines in the example: subroutines “Input” and “Output” have data storage scheme;
subroutine “ppDecompose CAG_4” decomposes matrix [A] with partial pivoting; subroutine
“ppSubstitute. CAG_4” performs forward and backward substitutions.

! #** Example program ***
! define variables where the length of A is determined by equation (11.3)
!
PARAMETER (N=7)
INTEGER*4 UpperBandwidth
PARAMETER (UpperBandwidth=1)
PARAMETER (LowerBandwidth=2)
REAL*4 A (N*(UpperBandwidth+LowerBandwidth*2+1)- LowerBandwidth )
REAL*4 X(N)
LOGICAL*4 NoGood
INTEGER*4 From(N)
INTEGER*4 First(N)
DATA X/21.0,11.0,122.0,19.0,333.0,1.0,3.0/

! input the non-zero fill-ins of matrix [A]
CALL Input(A,UpperBandwidth, LowerBandwidth,N)
! decompose in parallel

CALL ppDecompose CAG_4(A,N,UpperBandwidth, LowerBandwidth, &

From, First, NoGood)
!

! stop if NoGood=.True.
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IF(NoGood) STOP 'Cannot be decomposed'
perform substitutions in parallel

CALL ppSubstitute CAG_4(A,N,UpperBandwidth, LowerBandwidth, From, First, X)
output decomposed matrix

CALL Output(A,N,UpperBandwidth, LowerBandwidth)
output the solution

Write(*,'(" Solution is as:")")
Write(*,*) X

laipe done

call laipeDone

STOP
END
SUBROUTINE Input(A,Upper,Lower,N)

routine to demonstrate an application of data storage scheme
(A)FORTRAN CALL: CALL Input(A,Upper,Lower,N)

1.A: <R4> profile of matrix [A], dimension(*)

2.Upper: <I4> upper bandwidth

3.Lower: <I4> lower bandwidth

4.N: <I4> order of matrix

dummy arguments

INTEGER*4 Upper,Lower,N
REAL*4 A(1-Upper-Lower:Lower,1)

initialize
The ending bound of I4ATEMP is determined by equation (11.3)

DO I4TEMP=1,N*(Upper+Lower*2+1)-Lower
A(I4TEMP,1)=0.0
END DO

input

A(L,D)=1.0
AQ2,1)=4.0
AG3,1)=2.0
A(1,2)=2.0
A(2,2)=25.0
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A(3,2)=29.0
A(4,2)=99.0
A(2,3)=4.0
A(3,3)=14.0
A(4,3)=34.0
A(5,3)=3.0
A(3,4)=9.0
A(4,4)=19.0
A(5,4)=23.0
A(6,4)=11.0
A(4,5=71.0
A(5,5)=5.0
A(6,5)=17.0
A(7,5)=3.0
A(5,6)=93.0
A(6,6)=22.0
A(7,6)= 2.0
A(6,7)= 4.0
A(7,7)=9.0

RETURN
END
SUBROUTINE Output(A,N,Upper,Lower)

routine to output the decomposed matrix by data storage scheme
(A)FORTRAN CALL: CALL Output(A,N,Upper,Lower)

1.A: <R4> profile of matrix [A], dimension(*)

2.N: <I4> order of matrix [A]

3.Upper: <I4> upper bandwidth

4.Lower: <I4> lower bandwidth

dummy arguments

INTEGER*4 N,Upper,Lower
REAL*4 A(1-Upper-Lower:Lower,1)

local variables
INTEGER*4 Column,Row

output the coefficients on non-zero fill-ins. The beginning and ending indices for each
column are defined in equation (11.6) and equation (11.5)

WRITE(*,'(" Row Column Coefficient")")
DO Column=1,N
DO Row=MAXO0(1,Column-Upper-Lower), MINO(N,Column-+Lower)
WRITE(*,'(14,16,F9.3)") Row,Column,A(Row,Column)
END DO
END DO
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RETURN
END
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Chapter 12. Constant-Bandwidth, Symmetric,
and Positive Definite Solvers
with Partial Pivoting

12.1 Purpose

This chapter has subroutines for the solution of [A]{X}={B} with partial pivoting where the
left side matrix [A] is constant-bandwidth, symmetric, and positive definite. The non-zero fill-ins
of matrix [A] have a shape, for example, as:

o= SV,
w w =
W W =
+ + * =
* * * =

&+
&+
&+
Il

where the symbol "=" indicates non-zero fill-ins on the diagonal, and the symbol "*" indicates
non-zero fill-ins in the lower triangular part. Since the matrix [A] is symmetric, the upper
bandwidth is equal to the lower bandwidth before decomposition. A partial pivoting generally
disturbs symmetry. A decomposed result is not symmetric, such that the upper triangular part is
different from the lower triangular part on the decomposed result. When applying the
subroutines, just input the lower triangular part of the original matrix, and LAIPE solvers output
the lower and upper triangular matrices after decomposition.

Three types of subroutine are introduced in this chapter, which perform the following
functions:

1. Decompose matrix [A] into the product of [L][U] where matrix [L] is the lower triangular
matrix and matrix [U] is the upper triangular matrix.

2. Perform forward and backward substitutions.

3. Solve [A]{X}={B} in a single call.

Decomposition and substitution must be called in order, and work together as a pair.
Subroutines are as follows:

ppDecompose CSP 4
ppDecompose CSP_8
ppDecompose CSP_10
ppDecompose CSP_16
ppDecompose CSP_Z4
ppDecompose CSP_Z8
ppDecompose CSP_Z10
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ppDecompose CSP_Z16

ppSubstitute CSP_4
ppSubstitute CSP_8
ppSubstitute CSP_10
ppSubstitute CSP_16
ppSubstitute CSP_74
ppSubstitute CSP_Z8§
ppSubstitute CSP_Z10
ppSubstitute CSP_Z16

ppSolution CSP_4
ppSolution CSP 8
ppSolution CSP_10
ppSolution CSP_16
ppSolution CSP_Z4
ppSolution CSP_Z8
ppSolution CSP_Z10
ppSolution CSP_Z16

12.2 Fortran Syntax for Subroutine ppDecompose

The following subroutines decompose matrix [A] into [A]=[L][U] with partial pivoting.

Syntax is as follows:

ppDecompose CSP_4(A _io,N_i,LowerBandwidth i,From o, First 0,NoGood 0)
ppDecompose CSP_8(A _io,N_i,LowerBandwidth i,From o,First o, NoGood 0)
ppDecompose CSP_10(A_io,N_i,LowerBandwidth_i,From_o,First o, NoGood o)
ppDecompose CSP_16(A_io,N_i,LowerBandwidth_i,From_o,First o, NoGood o)
ppDecompose CSP_Z4(A _io,N_i,LowerBandwidth_i,From_o,First o, NoGood 0)
ppDecompose CSP_Z8(A_io,N i LowerBandwidth i,From o,First o, NoGood o)
ppDecompose CSP_Z10(A_io,N_i,LowerBandwidth_i,From o,First o, NoGood o)
ppDecompose CSP_Z16(A_io,N_i,LowerBandwidth_i,From o,First o, NoGood o)

where

1.

The argument A _io, array whose kind must be consistent with subroutine name convention, is
the profile of matrix [A] that inputs the original matrix and returns the result if the variable
NoGood o is false. For the definition of profile, please see section 12.5.
The argument N_i, an INTEGER(4) variable, is the order of matrix [A].

. The argument LowerBandwidth_i, an INTEGER(4) variable, is the lower bandwidth of matrix

[A]. The lower bandwidth is the maximal number of non-zero fill-ins below the diagonal in a
column.

. The argument From o, an INTEGER(4) array having N_i elements, returns the row index

where the remaining elements are from if NoGood_o is false.

. The argument First o, an INTEGER(4) array having N_i elements, returns the index of the

first nonzero fill-in on each column if NoGood o is false.

The argument NoGood o, a LOGICAL(4) variable, is a flag that indicates if the input matrix
[A] is suitable for the subroutine. If NoGood o=.True., the input matrix [A] cannot be
decomposed and there is no output returned; otherwise the profile A _io returns the
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decomposed matrices [L] and [U]. For the situation where NoGood o=.True., please see
section 12.7.

12.3 Fortran Syntax for Subroutine ppSubstitute

The following subroutines perform forward and backward substitutions. Syntax is as
follows:

ppSubstitute CSP_4(A i, N i, LowerBandwidth i, From i, First i, X io)
ppSubstitute CSP_8(A i, N i, LowerBandwidth i, From i, First i, X io)
ppSubstitute CSP_10(A i, N_i, LowerBandwidth i, From i, First i, X i0)
ppSubstitute CSP_16(A i, N_i, LowerBandwidth_i, From i, First i, X i0)
ppSubstitute CSP_Z4(A i, N_i, LowerBandwidth i, From i, First i, X i0)
ppSubstitute CSP_Z8(A i, N i, LowerBandwidth i, From i, First i, X io)
ppSubstitute CSP_Z10(A i, N i, LowerBandwidth i, From i, First i, X i0)
ppSubstitute CSP_Z16(A_i, N_i, LowerBandwidth_i, From_i, First i, X io)

where

1. The argument A i, array whose kind must be consistent with subroutine name convention, is
the profile of matrix [A] that inputs the result from decomposition.

2. The argument N i, an INTEGER(4) variable, is the order of matrix [A].

3. The argument LowerBandwidth_i, an INTEGER(4) variable, is the lower bandwidth of matrix
[A]. The lower bandwidth is the maximal number of non-zero fill-ins below the diagonal in a
column.

4. The argument From i, an INTEGER(4) array having N i elements, inputs the row index
where the remaining elements are from.

5. The argument First i, an INTEGER(4) array having N _i elements, inputs the index of the first
non-zero fill-in on each column.

6. The argument X io, array whose kind must be consistent with subroutine name convention,
inputs the right side vector, and returns the solution.

12.4 Fortran Syntax for Subroutine ppSolution

The following subroutines first decompose matrix [A] into the product of [L][U] with
partial pivoting, and then perform forward and backward substitutions. Solve [A]{X}={B} in a
single call. Syntax is as follows:

ppSolution CSP_4(A_io,N_i,LowerBandwidth_i,From_x,First x,X i0,NoGood o)
ppSolution CSP_8(A_io,N_i,LowerBandwidth_i,From_x,First x,X i0,NoGood o)
ppSolution CSP_10(A_io,N i,LowerBandwidth i,From x,First x,X i0,NoGood o)
ppSolution CSP_16(A_io,N_i,LowerBandwidth_i,From x,First x,X i0,NoGood o)
ppSolution_ CSP_Z4(A_io,N_iLowerBandwidth i,From x,First x,X io,NoGood o)
ppSolution_ CSP_Z8(A_io,N_i,LowerBandwidth i,From_x,First x,X io,NoGood o)
ppSolution_CSP_Z10(A_io,N_i,LowerBandwidth_i,From_ x,First x,X i0,NoGood 0)
ppSolution_CSP_Z16(A_io,N_i,LowerBandwidth_i,From_ x,First x,X i0,NoGood 0)

where
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1. The argument A_io, array whose kind must be consistent with subroutine name convention, is
the profile of matrix [A], that inputs the original matrix and returns the decomposed result if
the variable NoGood o is false. For the definition of profile, please see section 12.5.

2. The argument N _i, an INTEGER(4) variable, is the order of matrix [A].

3. The argument LowerBandwidth i, an INTEGER(4) variable, is the lower bandwidth of matrix
[A]. The lower bandwidth is the maximal number of non-zero fill-ins below the diagonal in a
column.

4. The argument From_x, an INTEGER(4) array having N i elements, is a working array.

5. The argument First x, an INTEGER(4) array having N_i elements, is a working array.

6. The argument X io, array whose kind must be consistent with subroutine name convention,
inputs the right side vector, and returns the solution if NoGood o is false.

7. The argument NoGood o, a LOGICAL(4) variable, is a flag indicating if the input system is
suitable for the subroutine. If NoGood o=.True., the input system cannot be solved by the
subroutine and there is no output returned; otherwise the profile A _io returns the decomposed
matrices [L] and [U], and vector X io returns the solution. For the situation where
NoGood o=.True., please see section 12.7.

12.5 Profile

Profile for a constant-bandwidth, symmetric, and positive definite solver with partial
pivoting always requires extra memory spaces for the upper triangular part. There are two
reasons for the extra memory space. The first one is that pivoting disturbs symmetry, such that
the upper triangular part is not the transport of lower triangular part and the upper triangular part
has to be completely saved. The second reason is that pivoting may enlarge the bandwidth of an
upper triangular part.

Consider a constant-bandwidth and symmetric matrix as follows.

* = =y,
k3 k3 =
% = (12 .13
+* +* =
* =
* * =
where the symbol "=" indicates non-zero fill-ins on the diagonal, and the symbol "*" indicates
y g Y

non-zero fill-ins in the lower triangular part. For the matrix in the form of (12.1), the lower
bandwidth is 2. Since the example matrix is symmetric, the upper bandwidth is 2. The profile for
the lower triangular part is defined by the non-zero fill-ins in the lower triangular part, but the
profile for the upper triangular part enlarges by adding the lower bandwidth. The profile for the
example in form (12.1) is then written as follows
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&
k&
L & &
r & & & & 7
= % % % %
o=y % %5 0%
% o= % 5 0% o0y
*oF o= 5 0y oy (12.2)
% o= g oy
* OF = %
* k3 =
L . i

—

. The symbol "=" represents non-zero fill-ins on the diagonal of the original matrix.

2. The symbol "*" represents non-zero fill-ins in the lower triangular part of the original matrix.

. The symbol "%" represents an extra memory space in the profile. The space returns the upper
triangular part of the decomposed matrix. It is unnecessary to initialize the space denoted by
the symbol "%".

4. The symbol "&"indicates an extra memory space whose content is never used.

W

Total length of profile is determined as
profile size = N * (LowerBandwidth * 3 + 1) — LowerBandwidth (12.3)

where N is the matrix order, and the variable LowerBandwidth is the lower bandwidth.

12.6 _Data Storage Scheme

Data storage scheme for a constant-bandwidth and symmetric solver with partial pivoting
must be declared in a Fortran program, for example:

INTEGER (4) :: LowerBandwidth
REAL (4) :: A(1-LowerBandwidth*2:LowerBandwidth,1)

where variable A here is a single precision profile for a matrix [A], and the variable
"LowerBandwidth" is the lower bandwidth of the matrix. For other kinds of variable, profile

must be properly declared. Then, the coefficient Az’j of matrix [A] is programmed in a Fortran

program as A(1,J), no matter A is in the upper triangular part or in the lower triangular part.

i

"Before decomposition", the non-zero fill-ins in the i-th column are from the beginning
index:

Maximum of (1,i-LowerBandwidth) (12.4)
to the ending index:

Minimum of (N,i+LowerBandwidth) (12.5)
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where N is the order of matrix [A]. "After decomposition", the bandwidth in the upper triangular
part has enlarged, and the beginning index in the i-th column becomes

Maximum of (1,i-LowerBandwidth*2) (12.6)

12.7 Failure of Calling Request

If the calling request fails, solving procedure cannot find a pivoting row such that the
absolute value of diagonal element is not negligible compared to unity.

12.8 Fortran Example

For a given system [A]{X}={B}, the left side matrix [A] and the right side vector {B} are
defined as:

& 21
4 55 SV 11
2 29 44 122
9 34 91 and 12
3 2 15 333
11 7 22 1
3 2 3

in which the order N=7, and the lower bandwidth LowerBandwidth=2. A Fortran program for
decomposition and substitution is as follows. There are four subroutines in the example:
subroutines “Input” and “Output” have data storage scheme; subroutine “ppDecompose CSP_4”
decomposes matrix [A]; subroutine “ppSubstitute CSP_4” performs substitutions.

| *** Example program ***
! define variables where the length of A is determined by equation (12.3)
!
PARAMETER (N=7)
INTEGER*4 LowerBandwidth
PARAMETER (LowerBandwidth=2)
REAL*4 A(N*(LowerBandwidth*3+1)-LowerBandwidth)
REAL*4 X(N)
LOGICAL*4 NoGood
INTEGER*4 From(N)
INTEGER*4 First(N)
DATA X/21.0,11.0,122.0,19.0,333.0,1.0,3.0/
!
! input the non-zero fill-ins of matrix [A]
!
CALL Input(A,LowerBandwidth,N)
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decompose in parallel
CALL ppDecompose CSP_4(A,N,LowerBandwidth, From, First, NoGood)
stop if NoGood=.True.
IF(NoGood) STOP 'Cannot be decomposed'
perform substitutions in parallel
CALL ppSubstitute CSP_4(A,N,LowerBandwidth,From,First, X)
output decomposed matrix
CALL Output(A,N,LowerBandwidth)
output the solution

Write(*,'(" Solution is as:")")
Write(*,*) X

laipe done
call laipeDone

STOP
END
SUBROUTINE Input(A,Lower,N)

routine to demonstrate an application of data storage scheme
(A)FORTRAN CALL: CALL Input(A,Lower,N)

1.A: <R4> profile of matrix [A], dimension(*)

2.Lower: <I4> lower bandwidth

3.N: <I4> order of matrix

dummy arguments

INTEGER*4 Lower,N
REAL*4 A(1-Lower*2:Lower,1)

input

A(1,1)=6.0
AQ2,1)=4.0
A(3,1)=2.0
A(2,2)=55.0
A(3,2)=29.0
A(4,2)=9.0
A(3,3)=44.0
A(4,3)=34.0
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A(5,3)=3.0
A(4,4)=91.0
A(5,4)=2.0
A(6,4)=11.0
A(5,5)=15.0
A(6,5)= 7.0
A(7,5)=3.0
A(6,6)=22.0
A(7,6)=2.0
A(7,7)=9.0

RETURN
END
SUBROUTINE Output(A,N,Lower)

routine to output the decomposed matrix by data storage scheme
(A)FORTRAN CALL: CALL Output(A,N,Lower)

1.A: <R4> profile of matrix [A], dimension(*)

2.N: <I4> order of matrix [A]

3.Lower: <I4> lower bandwidth

dummy arguments

INTEGER*4 N,Lower
REAL*4 A(1-Lower*2:Lower,1)

local variables
INTEGER*4 Column,Row

output the coefficients on non-zero fill-ins
The beginning and ending indices for each column are defined in
equation (12.6) and equation (12.5)

WRITE(*,'(" Row Column Coefficient")")
DO Column=1,N
DO Row=MAXO0(1,Column-Lower*2), MINO(N,Column+Lower)
WRITE(*,'(14,16,F9.3)") Row,Column,A(Row,Column)
END DO
END DO

RETURN
END

95



Chapter 13.  Constant-Bandwidth and Symmetric Solvers
with Partial Pivoting

13.1 Purpose

This chapter has subroutines for the solution of [A]{X}={B} with partial pivoting where the
left side matrix [A] has a constant bandwidth, and is symmetric. There is no consideration of
definiteness of matrix [A]. The non-zero fill-ins of matrix [A] have a shape, for example, as:

o= =Y.
# # =
I3 I3 i =
I3 i i =
* * * =
* * * =
where the symbol "=" indicates non-zero fill-ins on the diagonal, and the symbol "*" indicates

non-zero fill-ins in the lower triangular part. Since the matrix [A] is symmetric, the upper
bandwidth is equal to the lower bandwidth before decomposition. A partial pivoting generally
disturbs symmetry. A decomposed result is not symmetric, such that the upper triangular part is
different from the lower triangular part. When applying the subroutines, just input the lower
triangular part of the original matrix, and LAIPE solvers output the lower and upper triangular
matrices after decomposition.

Three types of subroutine are introduced in this chapter, which perform the following
functions:

1. Decompose matrix [A] into the product of [L][U] where matrix [L] is the lower triangular
matrix and matrix [U] is the upper triangular matrix.

2. Perform forward and backward substitutions.

3. Solve [A]{X}={B} in a single call.

Decomposition and substitution must be called in order, and work together as a pair.
Subroutines are as:

ppDecompose CSG 4
ppDecompose CSG_8
ppDecompose CSG 10
ppDecompose CSG 16
ppDecompose CSG_Z4
ppDecompose CSG_Z8
ppDecompose CSG_Z10
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ppDecompose CSG _Z16

ppSubstitute CSG 4
ppSubstitute CSG 8
ppSubstitute CSG_10
ppSubstitute CSG_16
ppSubstitute CSG_Z4
ppSubstitute CSG_Z8
ppSubstitute CSG_Z10
ppSubstitute CSG_Z16

ppSolution CSG 4
ppSolution CSG_8
ppSolution CSG_10
ppSolution CSG_16
ppSolution CSG 74
ppSolution CSG_Z8
ppSolution CSG_Z10
ppSolution CSG_Z16

13.2 Fortran Syntax for Subroutine ppDecompose

The following subroutines decompose matrix [A] into [A]=[L][U] with partial pivoting.

Syntax is as follows:

ppDecompose CSG_4(A _io,N_i,LowerBandwidth i,From o,First 0,NoGood 0)
ppDecompose CSG_8(A io,N_i,LowerBandwidth i,From o,First 0,NoGood 0)
ppDecompose CSG_10(A_io,N_i,LowerBandwidth i,From o,First 0,NoGood 0)
ppDecompose CSG_16(A_io,N_i,LowerBandwidth i,From_o,First 0,NoGood 0)
ppDecompose CSG_Z4(A_io,N_i,LowerBandwidth _i,From_o,First 0,NoGood o)
ppDecompose CSG_Z8(A io,N_i,LowerBandwidth i,From o,First 0,NoGood o)
ppDecompose CSG_Z10(A_io,N_i,LowerBandwidth i,From_o,First 0,NoGood o)
ppDecompose CSG Z16(A _io,N i,LowerBandwidth i,From o,First 0,NoGood o)

where

1.

The argument A _io, array whose kind must be consistent with subroutine name convention, is
the profile of matrix [A] that inputs the original matrix and returns the result if the variable
NoGood o is false. For the definition of profile, please see section 13.5.
The argument N_i, an INTEGER(4) variable, is the order of matrix [A].

. The argument LowerBandwidth_i, an INTEGER(4) variable, is the lower bandwidth of matrix

[A]. The lower bandwidth is the maximal number of non-zero fill-ins below the diagonal in a
column.

. The argument From o, an INTEGER(4) array having N_i elements, returns the row index

where the remaining elements are from if NoGood_o is false.

. The argument First o, an INTEGER(4) array having N_i elements, returns the index of the

first nonzero fill-in on each column if NoGood o is false.

The argument NoGood o, a LOGICAL(4) variable, is a flag that indicates if the input matrix
[A] is suitable for the subroutine. If NoGood o=.True., the input matrix [A] cannot be
decomposed and there is no output returned; otherwise the profile A _io returns the
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decomposed matrices [L] and [U]. For the situation where NoGood o=.True., please see
section 13.7.

13.3 Fortran Syntax for Subroutine ppSubstitute

The following subroutines perform forward and backward substitutions. Syntax is as
follows:

ppSubstitute CSG_4(A_i,N_i,LowerBandwidth i,From, i,First i,X io)
ppSubstitute CSG_8(A_i,N_i,LowerBandwidth_i,From_i,First_i,X io)
ppSubstitute CSG_10(A_i,N_i,LowerBandwidth i,From i,First i,X i0)
ppSubstitute CSG_16(A_i,N_i,LowerBandwidth i,From i,First i,X i0)
ppSubstitute CSG_Z4(A_i,N_i,LowerBandwidth I,From i,First i,X io)
ppSubstitute CSG_Z8(A 1,N i, LowerBandwidth i,From iFirst i,X io)
ppSubstitute CSG_Z10(A_i,N_i,LowerBandwidth i,From i,First i,X io)
ppSubstitute CSG_Z16(A_i,N_i,LowerBandwidth_i,From i,First i,X io)

where

1. The argument A i, array whose kind must be consistent with subroutine name convention, is
the profile of matrix [A] that inputs the result from decomposition.

2. The argument N i, an INTEGER(4) variable, is the order of matrix [A].

3. The argument LowerBandwidth_i, an INTEGER(4) variable, is the lower bandwidth of matrix
[A]. The lower bandwidth is the maximal number of non-zero fill-ins below the diagonal in a
column.

4. The argument From i, an INTEGER(4) array having N i elements, inputs the row index
where the remaining elements are from.

5. The argument First i, an INTEGER(4) array having N _i elements, inputs the index of the first
nonzero fill-in on each column.

6. The argument X io, array whose kind must be consistent with subroutine name convention,
inputs the right side vector, and returns the solution.

13.4 Fortran Syntax for Subroutine ppSolution

The following subroutines first decompose matrix [A] into the product of [L][U] with
partial pivoting, and then perform forward and backward substitutions. Solve the system
[A]{X}={B} in a single call. Syntax is as follows:

ppSolution CSG_4(A_io, N_i, LowerBandwidth i, From_x, First x, X io, NoGood 0)
ppSolution CSG_8(A_io, N_i, LowerBandwidth_i, From_x, First x, X io, NoGood 0)
ppSolution CSG_10(A_io, N_i, LowerBandwidth i, From_x, First x, X io, NoGood 0)
ppSolution CSG_16(A_io, N_i, LowerBandwidth_i, From_x, First x, X io, NoGood_ o)
ppSolution CSG_Z4(A io, N_i, LowerBandwidth i, From_x, First x, X io, NoGood o)
ppSolution CSG_Z8(A _io, N_i, LowerBandwidth i, From_x, First x, X io, NoGood o)
ppSolution_ CSG_Z10(A_io, N_i, LowerBandwidth_i, From_x, First_x, X io, NoGood_0)
ppSolution CSG_Z16(A_io, N_i, LowerBandwidth i, From_x, First x, X io, NoGood 0)

where
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1. The argument A_io, array whose kind must be consistent with subroutine name convention, is
the profile of matrix [A], that inputs the original matrix and returns the decomposed result if
the variable NoGood o is false. For the definition of profile, please see section 13.5.

2. The argument N _i, an INTEGER(4) variable, is the order of matrix [A].

3. The argument LowerBandwidth i, an INTEGER(4) variable, is the lower bandwidth of matrix
[A]. The lower bandwidth is the maximal number of non-zero fill-ins below the diagonal in a
column.

4. The argument From_x, an INTEGER(4) array having N i elements, is a working array.

5. The argument First x, an INTEGER(4) array having N_i elements, is a working array.

6. The argument X io, array whose kind must be consistent with subroutine name convention,
inputs the right side vector, and returns the solution if NoGood o is false.

7. The argument NoGood o, a LOGICAL(4) variable, is a flag indicating if the input system is
suitable for the subroutine. If NoGood o=.True., the input system cannot be solved and there
is no output; otherwise the profile A io returns the decomposed matrices [L] and [U], and
vector X _io returns the solution. For the situation where NoGood o=.True., please see section
13.7.

13.5 Profile

Profile for a constant-bandwidth and symmetric solver with partial pivoting always requires
extra memory spaces for the upper triangular part of the decomposed result. There are two
reasons for the extra memory space. The first one is that pivoting disturbs symmetry, such that
the upper triangular part is not the transport of lower triangular part and the upper triangular part
has to be completely saved. The second reason is that pivoting may enlarge the bandwidth of an
upper triangular part.

Consider a constant-bandwidth and symmetric matrix as follows.

* = SV .
* =
* ox = (13.1)
W W =
+ + =
w w =
where the symbol "=" indicates non-zero fill-ins on the diagonal, and the symbol "*" indicates

non-zero fill-ins in the lower triangular part. For the matrix in the form of (13.1), the lower
bandwidth is 2. Since the example matrix is symmetric, the upper bandwidth is 2. The profile for
the lower triangular part is defined by the non-zero fill-ins in the lower triangular part, but the
profile for the upper triangular part enlarges by adding the lower bandwidth. The profile for the
example in form (13.1) is then written as follows
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- & & & &
= 5 % 5 5
o= 5 0% 5 0%
o o= 5 5 %5 0%
TR o= 5 05 0y (13.2)
o= % g
+ * = ".:s
* +* =
B . i
profile size = N * (LowerBandwidth * 3 + 1) — LowerBandwidth (13.3)

where N is the matrix order, and the variable LowerBandwidth is the lower bandwidth.

13.6 Data Storage Scheme

Data storage scheme for a constant-bandwidth and symmetric solver with partial pivoting
must be declared in a Fortran program, for example:

INTEGER (4) :: LowerBandwidth
REAL (4) :: A(1-LowerBandwidth*2:LowerBandwidth,1)

where variable A here is a single precision profile for matrix [A], and the variable
"LowerBandwidth" is the lower bandwidth of the matrix. For other kinds of variable, profile

must be properly declared. Then, the coefficient Az’j of matrix [A] is programmed in a Fortran

program as A(I,J), no matter Aij is in the upper triangular part or in the lower triangular part.

"Before decomposition", the non-zero fill-ins in the i-th column are from the beginning
index:

Maximum of (1,i-LowerBandwidth) (13.4)
to the ending index:
Minimum of (N,i+LowerBandwidth) (13.5)

where N is the order of matrix [A]. "After decomposition", the bandwidth in the upper triangular
part has enlarged, and the beginning index in the i-th column becomes

Maximum of (1,i-LowerBandwidth*2). (13.6)

13.7 Failure of Calling Request

If the calling request fails, solving procedure cannot find a pivoting row such that the
absolute value of diagonal element is not negligible compared to unity.
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13.8 Fortran Example

For a given system [A]{X}={B}, the left side matrix [A] and the right side vector {B} are
defined as:

B 21
i 5 =Y. 11
2 29 44 122
9 341 and 19
3 & 15 333
11 7 22 1
i 2 8 3

in which the order N=7, and the lower bandwidth LowerBandwidth=2. A Fortran program for
decomposition and substitution is as follows. There are four subroutines in the example.
Subroutines  “Input” and  “Output” have data storage scheme; subroutine
“ppDecompose CSG_4” decomposes matrix [A]; subroutine “ppSubstitute CSG_4” performs
substitutions.

! #** Example program ***

! define variables where the length of A is determined by equation (13.3)
!

PARAMETER (N=7)

INTEGER*4 LowerBandwidth

PARAMETER (LowerBandwidth=2)

REAL*4 A(N*(LowerBandwidth*3+1)-LowerBandwidth)

REAL*4 X(N)

LOGICAL*4 NoGood

INTEGER*4 From(N)

INTEGER*4 First(N)

DATA X/21.0,11.0,122.0,19.0,333.0,1.0,3.0/

! input the non-zero fill-ins of matrix [A]
CALL Input(A,LowerBandwidth,N)
! decompose in parallel
CALL ppDecompose CSG_4(A,N, LowerBandwidth, From, First, NoGood)
! stop if NoGood=.True.
IF(NoGood) STOP 'Cannot be decomposed'
! perform substitutions in parallel

CALL ppSubstitute CSG_4(A,N, LowerBandwidth, From, First, X)
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output decomposed matrix
CALL Output(A,N,LowerBandwidth)
output the solution

Write(*,'(" Solution is as:")")
Write(*,*) X

laipe done
call laipeDone

STOP
END
SUBROUTINE Input(A,Lower,N)

routine to demonstrate an application of data storage scheme
(A)FORTRAN CALL: CALL Input(A,Lower,N)

1.A: <R4> profile of matrix [A], dimension(*)

2.Lower: <I4> lower bandwidth

3.N: <I4> order of matrix

dummy arguments

INTEGER*4 Lower,N
REAL*4 A(1-Lower*2:Lower,1)

input

A(1,1)=6.0
AQ2,1)=4.0
A(3,1)=2.0
A(2,2)=5.0
A(3,2)=29.0
A(4,2)=9.0
A(3,3)=44.0
A(4,3)=34.0
A(5,3)=3.0
A(4,4)=1.0
A(5,4)=2.0
A(6,4)=11.0
A(5,5)=15.0
A(6,5)=17.0
A(7,5)=3.0
A(6,6)=22.0
A(7,6)=2.0
A(7,7)=9.0

RETURN
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END
SUBROUTINE Output(A,N,Lower)

routine to output the decomposed matrix by data storage scheme
(A)FORTRAN CALL: CALL Output(A,N,Lower)

1.A: <R4> profile of matrix [A], dimension(*)

2.N: <I4> order of matrix [A]

3.Lower: <I4> lower bandwidth

dummy arguments

INTEGER*4 N,Lower
REAL*4 A(1-Lower*2:Lower,1)

local variables
INTEGER*4 Column,Row

output the coefficients on non-zero fill-ins
The beginning and ending indices for each column are defined in
equation (13.6) and equation (13.5)

WRITE(*,'(" Row Column Coefficient")")
DO Column=1,N
DO Row=MAXO0(1,Column-Lower*2), MINO(N,Column+Lower)
WRITE(*,'(14,16,F9.3)") Row,Column,A(Row,Column)
END DO
END DO

RETURN
END
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Chapter 14. Dense and Asymmetric Solvers with Partial Pivoting

14.1 Purpose

This chapter has subroutines for the solution of [A]{X}={B} with partial pivoting where the
left side matrix [A] is dense and asymmetric. There is no consideration of definiteness of matrix
[A]. The non-zero fill-ins of matrix [A] have a simple shape, for example, as:

where the symbol "*" indicates non-zero fill-ins. Three types of subroutine are introduced in this
chapter, which perform the following functions:

1. Decompose matrix [A] into the product of [L][U] where matrix [L] is the lower triangular
matrix and matrix [U] is the upper triangular matrix.

2. Perform forward and backward substitutions.

3. Solve [A]{X}={B} in a single call.

Decomposition and substitution must be called in order, and work together as a pair.
Subroutines are as follows:

ppDecompose DAG 4
ppDecompose DAG 8§
ppDecompose DAG 10
ppDecompose DAG 16
ppDecompose DAG 74
ppDecompose DAG_Z8
ppDecompose DAG _Z10
ppDecompose DAG Z16

ppSubstitute DAG 4
ppSubstitute DAG 8
ppSubstitute DAG 10
ppSubstitute DAG 16
ppSubstitute DAG Z4
ppSubstitute DAG 78
ppSubstitute DAG Z10
ppSubstitute DAG _Z16

104



ppSolution DAG 4
ppSolution DAG 8
ppSolution DAG 10
ppSolution DAG 16
ppSolution DAG_Z4
ppSolution DAG Z8
ppSolution DAG _Z10
ppSolution DAG Z16

14.2 Fortran Syntax for Subroutine ppDecompose

The following subroutines decompose matrix [A] into [A]=[L][U] with partial pivoting.

Syntax is as follows:

ppDecompose DAG_4(A_io, N_i, RowOrder_io, NoGood o)
ppDecompose DAG_8(A _io, N_i, RowOrder_io, NoGood o)
ppDecompose DAG_10(A_io, N_i, RowOrder io, NoGood 0)
ppDecompose DAG_16(A_io, N_i, RowOrder io, NoGood_o)
ppDecompose DAG_Z4(A io, N_i, RowOrder io, NoGood 0)
ppDecompose DAG Z8(A io, N _i, RowOrder io, NoGood 0)
ppDecompose DAG Z10(A_io, N i, RowOrder io, NoGood o)
ppDecompose DAG Z16(A _io, N i, RowOrder io, NoGood o)

where

1.

The argument A _io, array whose kind must be consistent with subroutine name convention, is
the profile of matrix [A] that inputs the original matrix and returns the result if the variable
NoGood_o is false. For the definition of profile, please see section 14.5.
The argument N_i, an INTEGER(4) variable, is the order of matrix [A].

. The argument RowOrder io, an INTEGER(4) array having N_i elements, enters a sequence of

consecutive numbers from one to N _i and returns the pivoting rows if NoGood o is false.

. The argument NoGood o, a LOGICAL(4) variable, is a flag that indicates if the input matrix

[A] is suitable for the subroutine. If NoGood o=.True., the input matrix [A] cannot be
decomposed and there is no output returned; otherwise the profile A _io returns the
decomposed matrices [L] and [U]. For the situation where NoGood o=.True., please see
section 14.7.

14.3 Fortran Syntax for Subroutine ppSubstitute

The following subroutines perform forward and backward substitutions. Syntax is as

follows:

ppSubstitute DAG_4(A_i, N_i, From_i, X io)
ppSubstitute DAG_8(A_i, N_i, From_i, X io0)
ppSubstitute DAG_10(A_i, N_i, From _i, X _io)
ppSubstitute DAG_16(A_i, N_i, From _i, X_io)
ppSubstitute DAG_Z4(A_i, N_i, From_i, X io)
ppSubstitute DAG Z8(A i, N _i, From i, X i0)
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ppSubstitute DAG Z10(A i, N i, From i, X io)
ppSubstitute DAG Z16(A i, N i, From i, X io)

where

. The argument A i, array whose kind must be consistent with subroutine name convention, is

the profile of matrix [A] that inputs the result from decomposition.
The argument N_i, an INTEGER(4) variable, is the order of matrix [A].

. The argument From i, an INTEGER(4) array having N i elements, inputs the pivoting rows

from decomposition.

. The argument X io, array whose kind must be consistent with subroutine name convention,

inputs the right side vector, and returns the solution.

14.4 Fortran Syntax for Subroutine ppSolution

The subroutines first decompose matrix [A] into the product of [L][U] with partial pivoting,

and then perform forward and backward substitutions. Solve [A]{X}={B} in a single call. Syntax
is as follows:

ppSolution DAG_4(A _io, N_i, RowOrder_io, X io, NoGood 0)
ppSolution DAG 8(A io, N_i, RowOrder io, X io, NoGood 0)
ppSolution DAG 10(A_io, N i, RowOrder io, X io, NoGood o)
ppSolution DAG _16(A_io, N i, RowOrder io, X io, NoGood o)
ppSolution DAG Z4(A_io, N_i, RowOrder io, X io, NoGood o)
ppSolution DAG_Z8(A_io, N_i, RowOrder io, X io, NoGood o)
ppSolution DAG Z10(A_io, N_i, RowOrder io, X io, NoGood 0)
ppSolution DAG Z16(A_io, N_i, RowOrder io, X io, NoGood 0)

where

1.

W

The argument A _io, array whose kind must be consistent with subroutine name convention, is
the profile of matrix [A], that inputs the original matrix and returns the decomposed result if
the variable NoGood o is false. For the definition of profile, please see section 14.5.

The argument N_i, an INTEGER(4) variable, is the order of matrix [A].

. The argument RowOrder io, an INTEGER(4) array having N _i elements, enters a sequence of

consecutive numbers from one to N _i and returns the pivoting rows if NoGood o is false.

. The argument X io, array whose kind must be consistent with subroutine name convention,

inputs the right side vector, and returns the solution if NoGood_o is false.

. The argument NoGood o, a LOGICAL(4) variable, is a flag that indicates if the input system

is suitable for the subroutine. If NoGood o=.True., the input system cannot be solved by the
subroutine and there is no output returned; otherwise the profile A _io returns the decomposed
matrices [L] and [U], and vector X io returns the solution. For the situation where
NoGood_o=.True., please see section 14.7.

14.5 Profile

Profile for a dense and asymmetric matrix is the simplest as:
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* % % % * % % {14.1)

Data storage scheme for a dense and asymmetric matrix must be declared in Fortran
program, for example:

REAL (4) :: A(N,N)

where variable A here is a single precision profile for matrix [A], and N is the matrix order. For
other kinds of variable, profile must be properly declared.

14.7 Failure of Calling Request

If a calling request fails, solving procedure cannot find a pivoting row such that the absolute
value of diagonal element is not negligible compared to unity.

14.8 Fortran Example

For a given system [A]{X}={B}, the left side matrix [A] and the right side vector {B} are
defined as follows:

1 2 13 17 32 47 & 21
4 5 3 5 0o 0O & 141
g 294 7 11 5 4 Z

i 9 34838 33 14 3 and =
12 23 3 23 45 -1 2 333
4 2 22 117 & 1 1

2 27 3 49 33 12 9 3

in which the order N=7. A Fortran program for decomposition and substitution is as follows.
Subroutines  “Input” and  “Output” have data  storage scheme. Subroutine
“ppDecompose DAG 4” decomposes matrix [A] with partial pivoting, and subroutine
“ppSubstitute. DAG_4” performs forward and backward substitutions.

| *** Example program ***
! define variables where the length of A is determined by equation (14.2)
!

PARAMETER (N=7)

REAL*4 A(N,N),X(N)

LOGICAL*4 NoGood
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INTEGER*4 RowOrder(N)
DATA X/21.0,141.0,2.0,9.0,333.0,1.0,3.0/

input matrix [A]

CALL Input(A,N,RowOrder)
decompose in parallel with partial pivoting

CALL ppDecompose DAG_4(A,N,RowOrder,NoGood)
stop if NoGood=.True.

IF(NoGood) STOP 'Cannot be decomposed'
perform substitutions in parallel

CALL ppSubstitute DAG_4(A,N,RowOrder,X)
output decomposed matrix

CALL Output(A,N)
output the solution

Write(*,'(" Solution is as:")")
Write(*,*) X

laipe done
call laipeDone
STOP

END
SUBROUTINE Input(A,N,RowOrder)

routine to demonstrate an application of data storage scheme
(A)FORTRAN CALL: CALL Input(A,N,RowOrder)
1.A: <R4> profile of matrix [A], dimension(N,N)
2.N: <I4> the order of matrix [A]
3.RowOrder: <I4> return a sequence of consecutive numbers from one to N, dimension(N)

dummy arguments

INTEGER*4 N
REAL*4 A(N,N),RowOrder(N)

set consecutive numbers

DO I=I,N
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|

|

|

|

|

RowOrder(I)=I

END DO

first column

A(L,D= 1.0
AQ2,1)=4.0
AB,1)=2.0
A4,1)=3.0
A(5,1)=12.0
A(6,1)= 4.0
A(7,1)=2.0

second column

A(1,2)=2.0
A(2,2)=5.0
A(3,2)=29.0
A(4,2)=9.0
A(5,2)=23.0
A(6,2)=2.0
A(7,2)=27.0

! third column

A(1,3)=13.0
A(2,3)=3.0
A(3,3)=4.0
A(4,3)=34.0
A(5,3)=3.0
A(6,3)=22.0
A(7,3)=3.0

fourth column

A(1,4)=17.0
AQ2,4)=5.0
AG3.4)=17.0
A(4,4)= 8.0
A(5,4)=23.0
A(6,4)=11.0
A(7,4)=49.0

! fifth column

A(1,5)=32.0
A(2,5)= 0.0
A(3,5)=11.0
A(4,5)=33.0
A(5,5)=45.0
A(6,5)=17.0
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|

|

A(7,5)=33.0

! sixth column

A(1,6)=47.0
A(2,6)= 0.0
A(3,6)=5.0
A4,6)=14.0
A(5,6)=-1.0
A(6,6)=2.0
A(7,6)=12.0

seventh column

A(1,7)= 6.0
AQ2,7)= 6.0
A(3,7)=4.0
A(4,7)=3.0
A(5,7)=2.0
A(6,7)=1.0
A(7,7)=9.0

RETURN
END
SUBROUTINE Output(A,N)

routine to output the decomposed matrix by data storage scheme
(A)FORTRAN CALL: CALL Output(A,N)

1.A: <R4> profile of matrix [A], dimension(*)

2.N: <I4> order of matrix [A]

dummy arguments

INTEGER*4 N
REAL*4 A(N,N)

local variables
INTEGER*4 Column,Row
output the coefficients on non-zero fill-ins
WRITE(*,'(" Row Column Coefficient")")
DO Column=1,N
DO Row=1,N
WRITE(*,'(14,16,F9.3)") Row,Column,A(Row,Column)
END DO
END DO

RETURN
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Chapter 15. Dense and Asymmetric Solvers with Full Pivoting

15.1 Purpose

This chapter has subroutines for the solution of [A]{X}={B} with full pivoting where the left
side matrix [A] is dense and asymmetric. There is no consideration of definiteness of matrix [A].
The non-zero fill-ins of matrix [A] have a simple shape, for example, as:

where the symbol "*" indicates non-zero fill-ins. Three types of subroutine are introduced in this
chapter, which perform the following functions:

1. Decompose matrix [A] into the product of [L][U] where matrix [L] is the lower triangular
matrix and matrix [U] is the upper triangular matrix.

2. Perform forward and backward substitutions.

3. Solve [A]{X}={B} in a single call.

Decomposition and substitution must be called in order, and work together as a pair.
Subroutines are as follows:

fpDecompose DAG 4
fpDecompose DAG_8
fpDecompose DAG_10
fpDecompose DAG_16
fpDecompose DAG Z4
fpDecompose DAG_Z8
fpDecompose DAG_Z10
fpDecompose DAG_Z16

fpSubstitute DAG 4
fpSubstitute DAG 8
fpSubstitute DAG 10
fpSubstitute DAG 16
fpSubstitute DAG 74
fpSubstitute DAG Z8
fpSubstitute DAG Z10
fpSubstitute DAG Z16
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fpSolution DAG 4
fpSolution DAG 8
fpSolution DAG 10
fpSolution DAG 16
fpSolution DAG 74
fpSolution DAG Z8
fpSolution DAG Z10
fpSolution DAG Z16

15.2 Fortran Syntax for Subroutine fpDecompose

This subroutine decomposes matrix [A] into [A]=[L][U] with full pivoting. Syntax is as

follows:

fpDecompose DAG_4(A_io,N _i,RowOrder_io,ColumnOrder_io,NoGood o)
fpDecompose DAG_8(A_io,N _i,RowOrder_io,ColumnOrder_io,NoGood o)
fpDecompose DAG_10(A_io,N_i,RowOrder io,ColumnOrder _io,NoGood o)
fpDecompose DAG_16(A_io,N_i,RowOrder_io,ColumnOrder io,NoGood o)
fpDecompose DAG Z4(A_io,N_i,RowOrder io,ColumnOrder io,NoGood o)
fpDecompose DAG_Z8(A_io,N_i,RowOrder_io,ColumnOrder io,NoGood o)
fpDecompose DAG_Z10(A_io,N_i,RowOrder_io,ColumnOrder_io,NoGood_0)
fpDecompose DAG_Z16(A_io,N_i,RowOrder_io,ColumnOrder_io,NoGood 0)

where

1.

The argument A _io, array whose kind must be consistent with subroutine name convention, is
the profile of matrix [A] that inputs the original matrix and returns the result if the variable
NoGood_o is false. For the definition of profile, please see section 15.5.
The argument N_i, an INTEGER(4) variable, is the order of matrix [A].

. The argument RowOrder io, an INTEGER(4) array having N_i elements, enters a sequence of

consecutive numbers from one to N _i and returns the pivoting rows if NoGood o is false.

. The argument ColumnOrder io, an INTEGER(4) array having N i elements, enters a

sequence of consecutive numbers from one to N_i and returns the pivoting columns if
NoGood o is false.

. The argument NoGood o, a LOGICAL(4) variable, is a flag that indicates if the input matrix

[A] is suitable for the subroutine. If NoGood o=.True., the input matrix [A] cannot be
decomposed and there is no output returned; otherwise the profile A _io returns the
decomposed matrices [L] and [U]. For the situation where NoGood o=.True., please see
section 15.7.

15.3 Fortran Syntax for Subroutine fpSubstitute

This subroutine performs forward and backward substitutions. Syntax is as follows:

fpSubstitute DAG 4(A_i, N_i, RowOrder i, ColumnOrder i, X io0)
fpSubstitute DAG_8(A_i, N_i, RowOrder i, ColumnOrder i, X io)
fpSubstitute DAG _10(A i, N_i, RowOrder i, ColumnOrder i, X i0)
fpSubstitute DAG 16(A i, N i, RowOrder i, ColumnOrder i, X i0)
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fpSubstitute DAG_Z4(A i, N_i, RowOrder i, ColumnOrder i, X io)
fpSubstitute DAG_Z8(A i, N_i, RowOrder i, ColumnOrder i, X io)
fpSubstitute DAG _Z10(A i, N_i, RowOrder i, ColumnOrder i, X i0)
fpSubstitute DAG Z16(A i, N i, RowOrder i, ColumnOrder i, X i0)

where

. The argument A i, array which type must be consistent with subroutine name convention, is

the profile of matrix [A] that inputs the result from decomposition.
The argument N_i, an INTEGER(4) variable, is the order of matrix [A].

. The argument RowOrder i, an INTEGER(4) array having N _i elements, inputs the pivoting

rows from decomposition.
The argument ColumnOrder i, an INTEGER(4) array having N i elements, inputs the
pivoting columns from decomposition.

. The argument X io, array which type must be consistent with subroutine name convention,

inputs the right side vector, and returns the solution.

15.4 Fortran Syntax for Subroutine fpSolution

The following subroutines first decompose matrix [A] into the product of [L][U] with full

pivoting, and then perform forward and backward substitutions. Solve [A]{X}={B} in a single
call. Syntax is as follows:

fpSolution DAG 4(A_io, N_i, RowOrder _io, ColumnOrder io, X io, NoGood 0)
fpSolution DAG_8(A _io, N_i, RowOrder_io, ColumnOrder_io, X io, NoGood o)
fpSolution DAG _10(A _io, N_i, RowOrder_io, ColumnOrder_io, X io, NoGood o)
fpSolution DAG 16(A _io, N i, RowOrder io, ColumnOrder io, X io, NoGood 0)
fpSolution DAG_Z4(A_io, N_i, RowOrder_io, ColumnOrder_io, X io, NoGood o)
fpSolution DAG_Z8(A_io, N_i, RowOrder_io, ColumnOrder_io, X io, NoGood o)
fpSolution DAG _Z10(A_io, N_i, RowOrder io, ColumnOrder io, X io, NoGood o)
fpSolution DAG _Z16(A_io, N_i, RowOrder io, ColumnOrder_io, X io, NoGood o)

where

L.

The argument A_io, array which type must be consistent with subroutine name convention, is
the profile of matrix [A], that inputs the original matrix and returns the decomposed result if
the variable NoGood o is false. For the definition of profile, please see section 15.5.

The argument N_i, an INTEGER(4) variable, is the order of matrix [A].

. The argument RowOrder io, an INTEGER(4) array having N i elements, enters a sequence of

consecutive numbers from one to N _i and returns the pivoting rows if NoGood o is false.

The argument ColumnOrder io, an INTEGER(4) array having N i elements, enters a
sequence of consecutive numbers from one to N i and returns the pivoting columns if
NoGood o is false.

. The argument X io, array which type must be consistent with subroutine name convention,

inputs the right side vector, and returns the solution if NoGood o is false.

The argument NoGood o, a LOGICAL(4) variable, is a flag that indicates if the input system
is suitable for the subroutine If NoGood o=.True., the input system cannot be solved by the
subroutine and there is no output returned; otherwise the profile A io returns the decomposed
matrices [L] and [U], and vector X io returns the solution. For the situation where
NoGood o=.True., please see section 15.7.
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15.5 Profile

Profile foradenseand:| =+ * =+ =+ =+ =+ =*

* % % % ¥ % 0% {15.1)

where the symbol "*" represents non-zero fill-ins. Total length of profile is determined as
profile size =N * N (15.2)

where N is the matrix order.

15.6 Data Storage Scheme

Data storage scheme for a dense and asymmetric matrix must be declared in Fortran
program, for example:

REAL (4) :: A(N,N)

where variable A here is a single precision profile for matrix [A], and N is the matrix order. For
other kinds of variable, profile must be properly declared. Then, the coefficient Aij of matrix

[A] is programmed in a Fortran program as A(LJ).

15.7 Failure of Calling Request

If a calling request fails, solving procedure cannot find a pivoting row such that the absolute
value of diagonal element is not negligible compared to unity.

15.8 Fortran Example

For a given system [A]{X}={B}, the left side matrix [A] and the right side vector {B} are
defined as:
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1 2 13 17 32 47 6 21
4 5 3 5 0 0O & 141
g 994 7 11 5 4 2

3 9 34 8 33 14 3 and =
1z 23 3 23 45 -1 Z 333
4 2 22 117 2 1 1

g Z7 3 49 33 12 9 3

in which the order N=7. A Fortran program for decomposition and substitution is as follows.
Subroutines  “Input” and  “Output” have data  storage scheme. Subroutine
“fpDecompose DAG_8” decomposes matrix [A] with full pivoting, and subroutine
“fpSubstitute DAG_8” performs forward and backward substitutions.

! *** Example program ***
! define variables where the length of A is determined by equation (15.2)
PARAMETER (N=7)
REAL*4 A(N,N),X(N)
LOGICAL*4 NoGood
INTEGER*4 RowOrder(N),ColumnOrder(N)
DATA X/21.0,141.0,2.0,9.0,333.0,1.0,3.0/
! input matrix [A]
CALL Input(A,N,RowOrder,ColumnOrder)
! decompose in parallel with full pivoting
CALL fpDecompose DAG 4(A,N,RowOrder, ColumnOrder, NoGood)
! stop if NoGood=.True.
IF(NoGood) STOP 'Cannot be decomposed'
! perform substitutions in parallel
CALL fpSubstitute DAG_4(A,N,RowOrder,ColumnOrder,X)
! output decomposed matrix
CALL Output(A,N)

! output the solution

Write(*,'(" Solution is as:")")
Write(*,*) X

! laipe done
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|

|

|

|

call laipeDone

STOP
END
SUBROUTINE Input(A,N,RowOrder,ColumnOrder)

routine to demonstrate an application of data storage scheme
(A)FORTRAN CALL: CALL Input(A,N,RowOrder,ColumnOrder)
1.A: <R4> profile of matrix [A], dimension(N,N)
2.N: <I4> the order of matrix [A]
3.RowOrder: <I4> return consecutive numbers from one to N
4.ColumnOrder: <I4> return consecutive numbers from one to N

dummy arguments

INTEGER*4 N
REAL*4 A(N,N),RowOrder(M),ColumnOrder(N)

| set consecutive numbers

DO I=1,N
RowOrder(I)=I

END DO

DO I=1,N
ColumnOrder(I)=I

END DO

first column

A(L,D)= 1.0
AQ2,1)=4.0
AG,1)=2.0
A4,1)=3.0
A(5,1)=12.0
A(6,1)=4.0
A(7,1)=2.0

second column

A(1,2)=2.0
A(2,2)=5.0
A(3,2)=29.0
A(4,2)=9.0
A(5,2)=23.0
A(6,2)=2.0
A(7,2)=27.0

! third column

A(1,3)=13.0
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A(2,3)=3.0
A(3,3)=4.0
A(4,3)=34.0
A(5,3)=3.0
A(6,3)=22.0
A(7,3)=3.0

! fourth column

A(1,4)=17.0
AQ2,4)=5.0
A(3,4)=17.0
A(4,4)=18.0
A(5,4)=23.0
A(6,4)=11.0
A(7,4)=49.0

! fifth column

A(1,5)=32.0
A(2,5)=0.0
A(3,5)=11.0
A(4,5)=33.0
A(5,5)=45.0
A(6,5)=17.0
A(7,5)=33.0

! sixth column

A(1,6)=47.0
A(2,6)= 0.0
A(3,6)=5.0
A4,6)=14.0
A(5,6)=-1.0
A(6,6)=2.0
A(7,6)=12.0

! seventh column

A(1,7)=6.0
A(2,7)=6.0
A(3,7)=4.0
A(4,7)=3.0
A(5,7)=2.0
A(6,7)=1.0
A(7,7)=9.0

RETURN

END
SUBROUTINE Output(A,N)
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routine to output the decomposed matrix by data storage scheme
(A)FORTRAN CALL: CALL Output(A,N)

1.A: <R4> profile of matrix [A], dimension(*)

2.N: <I4> order of matrix [A]

dummy arguments

INTEGER*4 N
REAL*4 A(N,N)

! local variables
INTEGER*4 Column,Row
! output the coefficients on non-zero fill-ins

WRITE(*,'(" Row Column Coefficient")")
DO Column=1,N
DO Row=1,N
WRITE(*,'(14,16,F9.3)") Row,Column,A(Row,Column)
END DO
END DO

RETURN
END
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Appendix A.  Auxiliary Subroutine for Releasing
System Resource

LAIPE is programmed in MTASK that allocates some system resource. The system
resource allocated by MTASK may be automatically released when the system resource is
unnecessary any more. LAIPE provides an auxiliary subroutine to immediately release system
resource when LAIPE is no longer required in an application.

A.1 Fortran Syntax for Subroutine laipeDone

This subroutine has no arguments. Fortran syntax is as follow:

CALL laipeDone
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Appendix B.  Auxiliary Subroutines for Task
Manipulations

This chapter has subroutines to set tasks for LAIPE solvers. Setting tasks for LAIPE solver
is always necessary when monitoring the performance. That may allow the executing time to be
collected with respect to a specified number of tasks. Then, speedup is obtained. This shows a
situation to set tasks for LAIPE solver.

Another situation to set tasks for LAIPE solvers is to reduce overhead for small-size
problems. By default, LAIPE solvers use all the available processors for computing. For
example, if there are 4 processors available, LAIPE solvers automatically start 4 tasks for
computing. It is not worth distributing small system onto multiprocessors. When applying LAIPE
solvers to small problems, i.e. of order 50x50, set a single task for the solution. On a single
processor computer, the default task is one. This chapter has three subroutines for task
manipulations, which are as:

GetTasks

SetTasks
ResetTasks

B.1 Fortran Syntax for Subroutine GetTasks

This subroutine gets the number of tasks that are ready for LAIPE solvers. Fortran syntax is
as follow:

CALL GetTasks(tasks o)
where

1. The argument tasks o, an INTEGER*4 variable, returns the number of tasks available for
LAIPE solvers.

B.2 Fortran Syntax for Subroutine SetTasks

This subroutine sets tasks for LAIPE solvers. Fortran syntax is as follow:
CALL SetTasks(tasks 1)
where
1. The argument tasks i, an INTEGER*4 variable, inputs the number of tasks for LAIPE

solvers. The input tasks i cannot be greater than the number of available processors. By
default, the parameter is the number of processors available.

B.3 Fortran Syntax for Subroutine ResetTasks
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This subroutine resets tasks to be the number of available processors. If an application never
set tasks, it is unnecessary to call this subroutine to reset the parameter. Fortran syntax is as
follow:

CALL ResetTasks

There is no argument required in the subroutine.
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