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About This Manual

About

The letters LAIPE(TM) stands for "Link And In Parallel Execute''. LAIPE is a symbol for 
high performance computing, and has a collection of subroutines for numerical analyses. All the 
functions in LAIPE are programmed in explicit parallelism, not optimized by auto-parallelizer. 
Some LAIPE solvers can yield almost perfect speedup, i.e., 1.99X on 2 processors. Link LAIPE 
to your programs, and then your applications not only can run on uniprocessor computer but also 
can speed up on multiprocessors. LAIPE provides powerful subroutines for users to efficiently 
take advantage of multiprocessors.

This  manual  covers  parallel  direct  solvers,  i.e.,  Cholesky decomposition,  skyline  solver, 
Crout decomposition, multiple entry solvers, and other popular and useful techniques. Solvers for 
dense and sparse systems are included. More than 90% of scientific and engineering problems 
are formulated into a system of equations.  Solution of system equations  is  required in  many 
scientific and engineering computing. LAIPE has the most useful and highly efficient solvers for 
scientific and engineering computing.

LAIPE is written in MTASK(TM) that is a parallel programming language. When building 
your application that links with LAIPE direct solvers, a copy of MTASK is necessary.

Assumptions About the Reader

This  manual  assumes  that  readers  have  knowledge  on  system  equations.  This  manual 
focuses on how to apply LAIPE solvers, but does not discuss mathematical equations and parallel 
algorithms.  This  manual  also  assumes  that  users  have  experience  writing,  executing,  and 
debugging Fortran, and assumes that user’s computer is capable of parallel processing.

Overview of This Manual

This manual is organized as follows:

Chapter 1 Introduction. This chapter introduces terms and essential concepts that user will 
need to be familiar with before applying LAIPE solvers.

Chapter 2 Constant-Bandwidth, Symmetric, and Positive Definite Systems. This chapter 
describes calling syntax of LAIPE subroutines for a system in the category, with 
the definition of profile, data storage scheme, and example.

Chapter 3 Variable-Bandwidth, Symmetric, and Positive Definite Systems. This chapter 
describes calling syntax of LAIPE subroutines for a system in the category, with 
the definition of profile, data storage scheme, and example.

Chapter 4 Dense, Symmetric, and Positive Definite Systems. This chapter describes calling 
syntax of LAIPE subroutines for a system in the category, with the definition of 
profile, data storage scheme, and example.
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Chapter 5 Constant-Bandwidth  and Symmetric  Systems.  This  chapter  describes  calling 
syntax of LAIPE subroutines for a system in the category, with the definition of 
profile, data storage scheme, and example.

Chapter 6 Variable-Bandwidth  and  Symmetric  Systems.  This  chapter  describes  calling 
syntax of LAIPE subroutines for a system in the category, with the definition of 
profile, data storage scheme, and example.

Chapter 7 Dense and Symmetric Systems.  This chapter describes calling syntax of LAIPE 
subroutines for a system in the category, with the definition of profile, data storage 
scheme, and example.

Chapter 8 Constant-Bandwidth and Asymmetric Systems. This chapter describes calling 
syntax of LAIPE subroutines for a system in the category, with the definition of 
profile, data storage scheme, and example.

Chapter 9 Variable-Bandwidth and Asymmetric Systems. This chapter  describes calling 
syntax of LAIPE subroutines for a system in the category, with the definition of 
profile, data storage scheme, and example.

Chapter 10 Dense and Asymmetric systems. This chapter describes calling syntax of LAIPE 
subroutines for a system in the category, with the definition of profile, data storage 
scheme, and example.

Chapter 11 Constant-Bandwidth  and  Asymmetric  Solvers  with  Partial  Pivoting. This 
chapter describes calling syntax of LAIPE subroutines for a system in the category, 
with the definition of profile, data storage scheme, and example.

Chapter 12 Constant-Bandwidth,  Symmetric, and Positive Definite Solvers with Partial 
Pivoting. This chapter describes calling syntax of LAIPE subroutines for a system 
in the category, with the definition of profile, data storage scheme, and example.

Chapter 13 Constant-Bandwidth  and  Symmetric  Solvers  with  Partial  Pivoting. This 
chapter describes calling syntax of LAIPE subroutines for a system in the category, 
with the definition of profile, data storage scheme, and example.

Chapter 14 Dense Solvers  with  Partial  Pivoting. This  chapter  describes  calling syntax of 
LAIPE subroutines for a system in the category, with the definition of profile, data 
storage scheme, and example.

Chapter 15 Dense Solvers with full pivoting. This chapter describes calling syntax of LAIPE 
subroutines for a system in the category, with the definition of profile, data storage 
scheme, and example.

Appendix A Auxiliary Subroutine for Releasing System Resource

Appendix B Auxiliary Subroutines for Task Manipulations

vi



Chapter 1. Introduction

Parallel computing especially benefits to large-scaled problems, that distributes computing 
loads among employed processors and speeds up an individual application. It is an important 
technique for scientific and engineering computing. The executing speed of parallel computing is 
superior to sequential computing that executes instructions in order.  Usually, more processors 
may produce better improvement.

LAIPE has high performance parallel solvers. On uniprocessor environments, LAIPE run as 
usual. When multiprocessors present, LAIPE may split itself to fit the multiprocessors. Users just 
link LAIPE to their applications. It is unnecessary for users to distribute computing instructions 
onto employ multiprocessors. LAIPE is a package for both small and large-scaled problems. The 
present release has solvers in the following categories:

1. sparse system (of constant bandwidth, and variable bandwidth)
2. dense system
3. symmetric system
4. asymmetric system
5. positive definite system
6. indefinite system
7. solution with partial pivoting
8. solution with full pivoting.

The following introduces essential terms and concept for applying LAIPE solvers.

1.1  Solution of System Equations

A system of linear equations may be written in the form 

         [A]{X}={B} (1.1)

where the left side matrix [A] is square and of order (NxN), and {B} is a given vector, and the 
vector {X} is the solution to be determined. Not every system in equation (1.1) is solvable. If the 
matrix [A] is singular, i.e., matrix [A] has zero eigenvalue or the determinant of [A] is zero, the 
solution  {X} is  not  unique or even does  not  exist.  This  manual  does  not  deal  with  singular 
systems, and provides solution to solvable systems.

In direct methods, solution procedure consists of two parts, decomposition and substitution. 
For example, the left side matrix [A] is decomposed into the product of [L][U] where matrix [L] 
is a lower triangular matrix and matrix [U] is an upper triangular matrix. Then, equation (1.1) is 
rewritten as

[L][U]{X}={B}, (1.2)

and is rewritten into the following 

[L]{Y}={B} (1.3)
[U]{X}={Y} (1.4)
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Equation  (1.3)  solves  {Y}.  Since  [L]  is  the  lower  triangular  matrix,  equation  (1.3)  is  called 
forward  substitution.  Equation  (1.4)  solves  {X},  and  is  called  backward  substitution.  The 
solution of equation (1.1) is obtained by decomposition, forward and backward substitutions. The 
solution costs depend on the nature of matrix [A], for example, sparsity or symmetry. Each type 
of matrix [A] will be briefly introduced in the following.

1.2  Symmetric and Asymmetric Systems

A symmetric  matrix  [A]  means that  Aij=A ji  for  any i  and j;  otherwise  matrix  [A]  is 
asymmetric.  Solution  of  symmetric  systems  is  cheaper  than  asymmetric  systems.  Most 
engineering and scientific applications can be approximated into a symmetric system. Symmetric 
systems only consider a triangular part of matrix [A]; While asymmetric systems must deal with 
the entire matrix.

1.3  Sparse and Dense Systems

In the situation that [A] has many zero coefficients, the row or column can be reordered 
such that the non-zero coefficients are clustered along the diagonal of [A]. The non-zero fill-ins 
generate a sparsity. This makes sparse matrix different from dense matrix. The sparse matrix can 
be classified into constant or variable bandwidth. The solution costs on sparse matrix may be far 
less than a corresponding dense system. If a system is sparse in nature, it is always better to apply 
sparse solvers.

1.4  Profile

Profile  is  a  contiguous  space  to  save  a  matrix.  For  a  dense  matrix  that  is  the  simplest 
example, the profile is the entire matrix size, i.e., an array of (NxN) coefficients. Sparse matrix 
has a profile less than (NxN) coefficients. A data storage scheme is associated with a profile. For 
an example of dense matrix, the profile is declared as

REAL (4) :: A(N,N)

The coefficient Aij  of matrix [A] is written as A(I,J) in a computer program. Profile must be in 
a contiguous space. Some Fortran compilers do not allocate 2-dimensional array in a contiguous 
space.  That  may create  problems for  LAIPE. It  is  always safe  to  initialize  [A],  in  the  main 
program, as a one-dimensional array, i.e., REAL (4) :: A(N*N), and then pass the reference of 
[A] to LAIPE solvers.

A sparse matrix has a profile smaller than the dense matrix, but the data storage scheme is 
more complex than dense matrix. The non-zero fill-ins are stored one by one in a contiguous 
space. For example, 
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1.5  Definiteness

Definiteness is a mathematical condition. If all the eigenvalues are positive, the system is 
positive definite; If all the eigenvalues are negative, the system is  negative definite; Others are 
indefinite. A solution procedure can be simplified if the system is definite. LAIPE has parallel 
solvers for positive definite systems. If a system is proved to be positive definite, it is better to 
apply a positive-definite solver.

1.6  Pivoting

Pivoting is a well known technique for improving accuracy. The idea of pivoting is well 
known.  There  are  two  kinds  of  pivoting;  partial  pivoting that  finds  the  pivoting  from  the 
remaining  elements  in  a  column,  and  full  pivoting that  finds  the  pivoting  element  from the 
remaining columns and rows.

Floating variables always suffer from round-off error. Round-off error is a common problem 
in scientific  and engineering computing. The problem can be enhanced if a number subtracts 
from another closed number. That may lose lots of significant digits. For example,

3.14160 - 3.14159 = 0.00001

The result does not have a significant digit, even both 3.14160 and 3.14159 have 5 significant 
digits. Any computations referring to the result become no significant digits, which is equivalent 
to no control of accuracy. Pivoting may keep significant digits as many as possible.

LAIPE  has  parallel  solvers  with  pivoting.  Solvers  with  pivoting,  no  doubt,  take  more 
execution  time,  and  may  lose  the  advantage  of  sparsity  and  symmetry.  Pivoting  is  also  a 
disadvantage to parallel processing.

1.7  Name Convention of LAIPE solvers

LAIPE has solvers in the following categories:
1. symmetric /asymmetric matrix
2. dense / sparse matrix
3. positive definite / indefinite system
4. single, double, and quad precision floating variables

LAIPE solvers can be identified by 5 elements. The name convention is as:
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(Function)_#$%_^

Each element is introduced as follows.

§  Element 1

The symbol (Function) indicates the main purpose of the subroutine. That may be one of the 
following:

Decompose
Substitute
Solution
ppDecompose
ppSubstitute
ppSolution
fpDecompose
fpSubstitute
fpSolution
meSolution

where the prefix "pp" indicates a procedure with partial pivoting, and the prefix "fp" indicates a 
procedure with full  pivoting, and the prefix "me" indicates a multiple entry direct solver.  For 
example, “fpDecompose” is a procedure to decompose a matrix with full pivoting.

Multiple  entry  direct  solvers  have  a  higher  degree  of  parallelism,  but  with  a  higher 
complexity.  Multiple-entry  direct  solvers  are  most  well  suitable  for  systems  with  a  small 
bandwidth, and are usually dealt with in a constant-bandwidth system, such as CSP, CSG, and 
CAG

§  Element 2

The symbol # is a single character. That indicates the type of sparsity, and may be one of 
the following:

C : sparse matrix with constant bandwidth
V : sparse matrix with variable bandwidth
D : dense matrix

§  Element 3

The  symbol  $  is  a  single  character,  and  is  a  flag  to  indicate  if  matrix  is  symmetric  or 
asymmetric. The flag is one of the following:

S : symmetric matrix
A : asymmetric matrix

§  Element 4
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The symbol % is a single character, and is a flag to indicate if the matrix is positive definite 
or indefinite. The flag is one of the following:

P : positive definite system
G : general system without a consideration of definiteness

§  Element 5

The  symbol  ^ is  for  the  kind of  real  or  complex  arguments.  Argument is  a  variable  or 
parameter,  passed to LAIPE solvers.  All  the  real  or  complex arguments  must  be in  the type 
specified by the symbol. The symbol is one of the following:

4 : single precision real variables (4 bytes)
8 : double precision real variables (8 bytes)
10 : extended precision real variables (10 bytes)
16 : quad precision real variables (16 bytes)
Z4 : single precision complex variables (8 bytes)
Z8 : double precision complex variables (16 bytes)
Z10 : extended precision complex variables (10 bytes)
Z16 : quad precision complex variables (32 bytes)

Some Fortran compiler does not support quad precision variables. LAIPE subroutines are 
identified by those five elements. For the example of "Decompose_VSG_8", it is a subroutine for 
decomposing a variable-bandwidth, symmetric, and indefinite matrix. The REAL variables are in 
double precision.

The arguments passed to LAIPE functions are suffixed a "_i",  "_o", "_io", or "_x". The 
suffix "_i" means the argument is an input. "_o" means an output. "_io" means that the argument 
inputs  the  data  and  returns  the  result.  The  suffix  "_x"  means  that  the  argument  provides  a 
working space for temporary uses. For example,

Decompose_CSP_4(A_io, N_i, LowerBandwidth_i, NoGood_o)

The arguments "A_io", "N_i", and "LowerBandwidth_i" have to be defined before calling the 
function, and the result can be obtained from arguments "A_io" and "NoGood_o".

1.8  Data Storage Schemes

A data storage scheme is associated with profile, and has two specifications. The first one is 
to declare a dimension of profile, and the second one replaces the column index of coefficient of 
matrix with an address reference label. For example, a skyline matrix [A] is declared in a Fortran 
subroutine as

REAL (4) :: A(1,1)

And, the column index j of coefficient Aij  is programmed in a Fortran program as A(I,Label(J)) 
where Label(J) is the address reference label for column J.
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Data storage scheme is applied to dummy arguments, for example in a subroutine, but not in 
the main program. The main program distributes a sufficient memory space for a profile,  and 
then the main program passes  the memory space to subroutine where data storage scheme is 
applied.
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Chapter 2. Constant-Bandwidth, Symmetric,
and
Positive Definite Systems

2.1  Purpose

This chapter has subroutines for the solution of [A]{X}={B} where the left side matrix [A] 
is of constant  bandwidth,  symmetric,  and positive definite.  The non-zero fill-ins in the lower 
triangular part of matrix [A] have a shape, for example, as:

Three types of subroutine are introduced in the chapter, which perform the following functions:
1. Decompose [A] into the product of  [L ][L ]T where matrix [L] is the lower triangular 

matrix.
2. Perform forward and backward substitutions.
3. Solve [A]{X}={B} in a single call.

Decomposition and substitution must be called in order, and work together as a pair. No pivoting 
is applied to the functions introduced in this chapter. Subroutines are as:

Decompose_CSP_4
Decompose_CSP_8
Decompose_CSP_10
Decompose_CSP_16
Decompose_CSP_Z4
Decompose_CSP_Z8
Decompose_CSP_Z10
Decompose_CSP_Z16

Substitute_CSP_4
Substitute_CSP_8
Substitute_CSP_10
Substitute_CSP_16
Substitute_CSP_Z4
Substitute_CSP_Z8
Substitute_CSP_Z10
Substitute_CSP_Z16
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Solution_CSP_4
Solution_CSP_8
Solution_CSP_10
Solution_CSP_16
Solution_CSP_Z4
Solution_CSP_Z8
Solution_CSP_Z10
Solution_CSP_Z16

meSolution_CSP_4
meSolution_CSP_8
meSolution_CSP_10
meSolution_CSP_16
meSolution_CSP_Z4
meSolution_CSP_Z8
meSolution_CSP_Z10
meSolution_CSP_Z16

The subroutines with a prefix "me", i.e.,  meSolution_CSP_4, are multiple-entry direct solvers 
that are most well suitable for systems with a small bandwidth.

2.2  Fortran Syntax for Subroutine Decompose

The following subroutines decompose a matrix [ A] into [ A]=[L ] [L ]T :

Decompose_CSP_4 (A_io, N_i, LowerBandwidth_i, NoGood_o)
Decompose_CSP_8 (A_io, N_i, LowerBandwidth_i, NoGood_o)
Decompose_CSP_10 (A_io, N_i, LowerBandwidth_i, NoGood_o)
Decompose_CSP_16(A_io, N_i, LowerBandwidth_i, NoGood_o)
Decompose_CSP_Z4 (A_io, N_i, LowerBandwidth_i, NoGood_o)
Decompose_CSP_Z8 (A_io, N_i, LowerBandwidth_i, NoGood_o)
Decompose_CSP_Z10 (A_io, N_i, LowerBandwidth_i, NoGood_o)
Decompose_CSP_Z16 (A_io, N_i, LowerBandwidth_i, NoGood_o)

where
1. The argument A_io, array whose kind must be consistent with subroutine name convention, is 

the profile of matrix [A], that inputs the original matrix and returns the result if the variable 
NoGood_o is false. For the definition of profile, please see section 2.6.

2. The argument N_i, an INTEGER(4) variable, is the order of matrix [A].
3. The argument LowerBandwidth_i, an INTEGER(4) variable, is the lower bandwidth of matrix 

[A]. The lower bandwidth is the maximal number of non-zero fill-ins below the diagonal in a 
column.

4. The argument NoGood_o, a LOGICAL(4) variable, is a flag that indicates if the input matrix 
[A] is suitable for the subroutine. If NoGood_o=.True., the input matrix [A] is not positive 
definite and there is no output from the subroutine;  otherwise the profile A_io returns the 
decomposed matrix [L]. For the situation where NoGood_o=.True., please see section 2.8.

2.3  Fortran Syntax for Subroutine Substitute
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The following subroutines perform forward and backward substitutions:

Substitute_CSP_4 (A_i, N_i, LowerBandwidth_i, X_io)
Substitute_CSP_8 (A_i, N_i, LowerBandwidth_i, X_io)
Substitute_CSP_10 (A_i, N_i, LowerBandwidth_i, X_io)
Substitute_CSP_16 (A_i, N_i, LowerBandwidth_i, X_io)
Substitute_CSP_Z4 (A_i, N_i, LowerBandwidth_i, X_io)
Substitute_CSP_Z8 (A_i, N_i, LowerBandwidth_i, X_io)
Substitute_CSP_Z10 (A_i, N_i, LowerBandwidth_i, X_io)
Substitute_CSP_Z16 (A_i, N_i, LowerBandwidth_i, X_io)

where

1. The argument A_i, array whose kind must be consistent with subroutine name convention, is 
the profile of matrix [A], that inputs the result from decomposition.

2. The argument N_i, an INTEGER(4) variable, is the order of matrix [A].
3. The  argument  LowerBandwidth_i,  an  INTEGER(4)  variable,  is  the  lower  bandwidth  of 

matrix  [A].  The  lower  bandwidth  is  the  maximal  number  of  non-zero  fill-ins  below the 
diagonal in a column.

4. The argument X_io, array whose kind must be consistent with subroutine name convention, 
inputs the right side vector, and returns the solution.

2.4  Fortran Syntax for Subroutine Solution

The following subroutines first decompose matrix [A] into the product of  [L ][L ]T , and 
then perform forward and backward substitutions. Solve the system [A]{X}={B} in a single call. 
The syntax is as follows:

Solution_CSP_4 (A_io, N_i, LowerBandwidth_i, X_io, NoGood_o)
Solution_CSP_8 (A_io, N_i, LowerBandwidth_i, X_io, NoGood_o)
Solution_CSP_10 (A_io, N_i, LowerBandwidth_i, X_io, NoGood_o)
Solution_CSP_16 (A_io, N_i, LowerBandwidth_i, X_io, NoGood_o)
Solution_CSP_Z4 (A_io, N_i, LowerBandwidth_i, X_io, NoGood_o)
Solution_CSP_Z8 (A_io, N_i, LowerBandwidth_i, X_io, NoGood_o)
Solution_CSP_Z10 (A_io, N_i, LowerBandwidth_i, X_io, NoGood_o)
Solution_CSP_Z16 (A_io, N_i, LowerBandwidth_i, X_io, NoGood_o)

where
1. The argument A_io, array whose kind must be consistent with subroutine name convention, 

is the profile of matrix [A], that inputs the original matrix and returns the decomposed result 
if the variable NoGood_o is false. For the definition of profile, please see section 2.6.

2. The argument N_i, an INTEGER(4) variable, is the order of matrix [A].
3. The  argument  LowerBandwidth_i,  an  INTEGER(4)  variable,  is  the  lower  bandwidth  of 

matrix  [A].  The  lower  bandwidth  is  the  maximal  number  of  non-zero  fill-ins  below the 
diagonal in a column.

4. The argument X_io, array whose kind must be consistent with subroutine name convention, 
inputs the right side vector, and returns the solution if NoGood_o is false.

5. The argument NoGood_o, a LOGICAL(4) variable, is a flag that indicates if the input matrix 
[A] is suitable for the subroutine. If NoGood_o=.True., the input matrix [A] is not positive 
definite and there is no output from the subroutine; otherwise the profile A_io returns the 
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decomposed  matrix  [L]  and  vector  X_io  returns  the  solution.  For  the  situation  where 
NoGood_o=.True., please see section 2.8.

2.5  Fortran Syntax for meSolution

The following subroutines solve the system [A][X]=[B] by multiple-entry method, where 
[X] and [B] may be a matrix with multiple vectors, i.e., [X]=[{ X 1 } { X 2 } ...] and [B]=[{ B1 } 

{ B2 } ...]. Syntax is as follows:

meSolution_CSP_4(A_io, N_i,LowerBandwidth_i, X_io, Nset_i,    &
WorkingSpace_x,  NoGood_o)

meSolution_CSP_8(A_io, N_i,LowerBandwidth_i, X_io, Nset_i,    &
WorkingSpace_x, NoGood_o)

meSolution_CSP_10(A_io, N_i,LowerBandwidth_i, X_io, Nset_i,    &
WorkingSpace_x, NoGood_o)

meSolution_CSP_16(A_io, N_i,LowerBandwidth_i, X_io, Nset_i,    &
WorkingSpace_x, NoGood_o)

meSolution_CSP_Z4(A_io, N_i,LowerBandwidth_i, X_io, Nset_i,    &
WorkingSpace_x, NoGood_o)

meSolution_CSP_Z8(A_io, N_i,LowerBandwidth_i, X_io, Nset_i,    &
WorkingSpace_x, NoGood_o)

meSolution_CSP_Z10(A_io, N_i,LowerBandwidth_i, X_io, Nset_i,    &
WorkingSpace_x, NoGood_o)

meSolution_CSP_Z16(A_io, N_i,LowerBandwidth_i, X_io, Nset_i,    &
WorkingSpace_x, NoGood_o)

where
1. The argument A_io, array whose kind must be consistent with subroutine name convention, is 

the profile of matrix [A] that inputs the original matrix. After returning from this subroutine, 
the content in the profile is destroyed no matter if the calling request is successful or not. For 
the definition of profile, please see section 2.6.

2. The argument N_i, an INTEGER(4) variable, is the order of matrix [A].
3. The argument LowerBandwidth_i, an INTEGER(4) variable, is the lower bandwidth of matrix 

[A]. The lower bandwidth is the maximal number of non-zero fill-ins below the diagonal in a 
column. This subroutine is more efficient if the lower bandwidth is small.

4. The argument X_io, array whose kind must be consistent with subroutine name convention, 
inputs the right side vector(s), and returns the solution if NoGood_o is false. 

5. The argument Nset_i, an INTEGER(4) variable, is the number of right side vectors.
6. The argument WorkingSpace_x, array whose kind must be consistent with subroutine name 

convention  and providing a  space of   (2*N_i*LowerBandwidth_i)  elements,  is  a  working 
space.

7. The argument NoGood_o, a LOGICAL(4) variable, is a flag that indicates if the input matrix 
[A] is suitable for the subroutine. If NoGood_o=.True., the input matrix [A] is not positive 
definite and there  is  no output  from the subroutine;  otherwise the vector X_io returns the 
solution. For the situation where NoGood_o=.True., please see section 2.8.

2.6  Profile
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The profile for a constant-bandwidth, symmetric, and positive definite matrix is as:

where the symbol * represents non-zero fill-ins and the symbol & indicates an extra memory 
space whose content is never used. Total length of profile is determined as

profile size = (N-1) * LowerBandwidth + N (2.2)

where N is the matrix order, and LowerBandwidth is the lower bandwidth.

2.7  Data Storage Scheme

Data storage scheme must be declared in a Fortran program, for example:

INTEGER (4) :: LowerBandwidth
REAL (4) :: A(LowerBandwidth,1)

where  variable  A here  is  a  single  precision  profile.  Other  kinds  of  variable,  profile  must  be 
properly  declared.  Then,  the  coefficient Aij in  the  lower  triangular  part  of  matrix  [A]  is 
programmed in a Fortran program as A(I,J).

2.8  Failure of Calling Request

If a calling request fails, solving procedure meets a diagonal coefficient that is very small 
and is negligible compared to unity.

The  subroutines  introduced  in  this  chapter  deal  with  positive  definite  systems.  Since  a 
symmetric solver does not consider pivoting, failure of request does not mean the input matrix is 
absolutely  not  positive  definite.  A pivoting  may continue  execution.  However,  pivoting may 
destroy  the  symmetry.  If  you  cannot  get  the  solution  by  the  subroutines  introduced  in  this 
chapter, try the solvers with partial pivoting, i.e., ppDecompose_CSP_4 discussed in chapter 12. 
Pivoting procedure always takes more time, and is less efficient in parallel processing.

2.9  Fortran Example
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For a given system [A]{X}={B}, the left side matrix [A] and the right side vector {B} are 
defined as follows:

in which the order N=7 and the lower bandwidth, denoted by LowerBandwidth, is 2. A Fortran 
program for  decomposition  and substitution  is  as  follows.  Subroutines  “Input”  and “Output” 
have example of data storage scheme. Subroutine “Decompose_CSP_4” decomposes matrix [A], 
and subroutine “Substitute_CSP_4” performs forward and backward substitutions.

!  *** Example program ***
!  define variables where the length of A is determined by equation (2.2)
!
        Integer (4), PARAMETER :: N = 7
        Integer (4), PARAMETER :: LowerBandwidth=2
        REAL (4) :: A((N-1)*LowerBandwidth+N), X(N)
        LOGICAL (4) :: NoGood
        DATA X/21.0,141.0,2.0,9.0,333.0,1.0,3.0/
!
!  input the lower triangular part of [A]
!
        CALL Input(A,LowerBandwidth)
!
!  decompose in parallel
!
        CALL Decompose_CSP_4(A,N,LowerBandwidth, NoGood)
!
!  stop if NoGood=.True.
!
        IF(NoGood) STOP 'Cannot be decomposed'
!
!  perform substitutions in parallel
!
        CALL Substitute_CSP_4(A,N,LowerBandwidth,sX)
!
!  output decomposed matrix
!
        CALL Output(A,N,LowerBandwidth)
!
!  output the solution
!
        Write(*,'('' Solution is as:'')')
        Write(*,*) X
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!
!  laipe done
!
        call laipeDone
!
        STOP
        END

        SUBROUTINE Input(A,LowerBandwidth)
!
!
!  routine to demonstrate an application of data storage scheme
!  (A)FORTRAN CALL: CALL Input(A,LowerBandwidth)
!     1.A: <R4> profile of matrix [A], dimension(*)
!     2.LowerBandwidth: <I4> lower bandwidth
!
!  dummy arguments
!
        INTEGER (4) :: LowerBandwidth
        REAL (4) :: A(LowerBandwidth,1)

!
!  input
!
        A(1,1)= 1.0
        A(2,1)= 4.0
        A(3,1)= 2.0
        A(2,2)=25.0
        A(3,2)=29.0
        A(4,2)= 9.0
        A(3,3)=88.0
        A(4,3)=34.0
        A(5,3)= 3.0
        A(4,4)=89.0
        A(5,4)=23.0
        A(6,4)=11.0
        A(5,5)=45.0
        A(6,5)= 7.0
        A(7,5)= 3.0
        A(6,6)=22.0
        A(7,6)= 2.0
        A(7,7)= 9.0
!
       RETURN
       END

       SUBROUTINE Output(A,N,LowerBandwidth)
!
!
!  routine to output the decomposed matrix by data storage scheme
!  (A)FORTRAN CALL: CALL Output(A,N,LowerBandwidth)
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!     1.A: <R4> profile of matrix [A], dimension(*)
!     2.N: <I4> order of matrix [A]
!     3.LowerBandwidth: <I4> lower bandwidth
!
!  dummy arguments
!
       INTEGER (4) :: N,LowerBandwidth
       REAL (4) :: A(LowerBandwidth,1)

!
!  local variables
!
       INTEGER (4) :: Column,Row
!
!  output the coefficients on non-zero fill-ins
!
       WRITE(*,'('' Row  Column  Coefficient'')')
       DO Column=1,N
              DO Row=Column, MIN0(Column+LowerBandwidth,N)
                    WRITE(*,'(I4,I6,F9.3)') Row,Column, A(Row,Column)
             END DO
      END DO
!
      RETURN
      END
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Chapter 3. Variable-Bandwidth, Symmetric, and
Positive Definite Systems

3.1  Purpose

This chapter has subroutines for the solution of [A]{X}={B} where the left side matrix [A] 
has a variable bandwidth, and is symmetric and positive definite.  The non-zero fill-ins in the 
upper triangular part of matrix [A] have a shape, for example, as:

which  looks like  a  skyline  in  a  city,  and  is  sometimes called  skyline  solver.  Three  types  of 
subroutine are introduced in the chapter, which have the following functions:

1. Decompose [A] into the product of  [U ]T [U ]  where matrix [U] is the upper triangular 
matrix.

2. Perform forward and backward substitutions.
3. Solve [A]{X}={B} in a single call.

Decomposition and substitution must be called in order, and work together as a pair. No 
pivoting is applied to the functions introduced in this chapter.  This chapter has the following 
subroutines:

Decompose_VSP_4
Decompose_VSP_8
Decompose_VSP_10
Decompose_VSP_16
Decompose_VSP_Z4
Decompose_VSP_Z8
Decompose_VSP_Z10
Decompose_VSP_Z16

Substitute_VSP_4
Substitute_VSP_8
Substitute_VSP_10
Substitute_VSP_16
Substitute_VSP_Z4
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Substitute_VSP_Z8
Substitute_VSP_Z10
Substitute_VSP_Z16

Solution_VSP_4
Solution_VSP_8
Solution_VSP_10
Solution_VSP_16
Solution_VSP_Z4
Solution_VSP_Z8
Solution_VSP_Z10
Solution_VSP_Z16

3.2  Fortran Syntax for Subroutine Decompose

The following subroutines decompose [A] into [A]= [U ]T [U ] . Syntax is as follows:

Decompose_VSP_4(A_io, N_i, Label_i, NoGood_o)
Decompose_VSP_8(A_io, N_i, Label_i, NoGood_o)
Decompose_VSP_10(A_io, N_i, Label_i, NoGood_o)
Decompose_VSP_16(A_io, N_i, Label_i, NoGood_o)
Decompose_VSP_Z4(A_io, N_i, Label_i, NoGood_o)
Decompose_VSP_Z8(A_io, N_i, Label_i, NoGood_o)
Decompose_VSP_Z10(A_io, N_i, Label_i, NoGood_o)
Decompose_VSP_Z16(A_io, N_i, Label_i, NoGood_o)

where

1. The argument A_io, array whose kind must be consistent with subroutine name convention, 
is the profile of matrix [A] that inputs the original matrix and returns the result if the variable 
NoGood_o is false. For the definition of profile, please see section 3.5.

2. The argument N_i, an INTEGER(4) variable, is the order of matrix [A].
3. The  argument  Label_i,  an  INTEGER(4)  array,  is  the  address  reference  label.  For  the 

definition of address reference label, please see section 3.6.
4. The argument NoGood_o, a LOGICAL(4) variable, is a flag that indicates if the input matrix 

[A]  is  suitable  for  the  subroutine.  If  NoGood_o=.True.,  the  input  matrix  [A]  cannot  be 
decomposed by the  subroutine  and there is  no output  from the subroutine;  otherwise  the 
profile A_io returns the decomposed matrix [U]. For the situation where NoGood_o=.True., 
please see section 3.7.

3.3  Fortran Syntax for Subroutine Substitute

The  following  subroutines  perform  forward  and  backward  substitutions.  Syntax  is  as 
follows:

          Substitute_VSP_4( A_i, N_i, Label_i, X_io)
Substitute_VSP_8( A_i, N_i, Label_i, X_io)
Substitute_VSP_10( A_i, N_i, Label_i, X_io)
Substitute_VSP_16( A_i, N_i, Label_i, X_io)
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Substitute_VSP_Z4( A_i, N_i, Label_i, X_io)
Substitute_VSP_Z8( A_i, N_i, Label_i, X_io)
Substitute_VSP_Z10( A_i, N_i, Label_i, X_io)
Substitute_VSP_Z16( A_i, N_i, Label_i, X_io)

 
where
1. The argument A_i,, array whose kind must be consistent with subroutine name convention, is 

the profile of matrix [A], that inputs the result from decomposition.
2. The argument N_i, an INTEGER(4) variable, is the order of matrix [A].
3. The  argument  Label_i,  an  INTEGER(4)  array,  is  the  address  reference  label.  For  the 

definition of address reference label, please see section 3.6.
4. The argument X_io, array whose kind must be consistent with subroutine name convention, 

inputs the right side vector, and returns the solution.

3.4  Fortran Syntax for Subroutine Solution

The following subroutines first  decompose [A] into the product  of  [U ]T [U ] ,  and then 
perform forward and backward substitutions. Solve [A]{X}={B} in a single call. Syntax is as 
follows:

Solution_VSP_4 ( A_io, N_i, Label_i, X_io, NoGood_o)
Solution_VSP_8 ( A_io, N_i, Label_i, X_io, NoGood_o)
Solution_VSP_10 ( A_io, N_i, Label_i, X_io, NoGood_o)
Solution_VSP_16 ( A_io, N_i, Label_i, X_io, NoGood_o)
Solution_VSP_Z4 ( A_io, N_i, Label_i, X_io, NoGood_o)
Solution_VSP_Z8 ( A_io, N_i, Label_i, X_io, NoGood_o)
Solution_VSP_Z10 ( A_io, N_i, Label_i, X_io, NoGood_o)
Solution_VSP_Z16 ( A_io, N_i, Label_i, X_io, NoGood_o)

              
where
1. The argument A_io, array whose kind must be consistent with subroutine name convention, 

is the profile of matrix [A], that inputs the original matrix and returns the decomposed result 
if the variable NoGood_o is false. For the definition of profile, please see section 3.5.

2. The argument N_i, an INTEGER(4) variable, is the order of matrix [A].
3. The  argument  Label_i,  an  INTEGER(4)  array,  is  the  address  reference  label.  For  the 

definition of address reference label, please see section 3.6.
4. The argument X_io, array whose kind must be consistent with subroutine name convention, 

inputs the right side vector, and returns the solution if NoGood_o is false.
5. The argument NoGood_o, a LOGICAL(4) variable, is a flag that indicates if the input matrix 

[A] is suitable for the subroutine. If NoGood_o=.True., the input matrix [A] is not positive 
definite and there is no output from the subroutine; otherwise the profile A_io returns the 
decomposed  matrix  [U]  and  vector  X_io  returns  the  solution.  For  the  situation  where 
NoGood_o=.True., please see section 3.7.

3.5  Profile

Profile for a variable-bandwidth, symmetric, and positive definite matrix is as:
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profile size = Label(N)-1+ N (3.2)

where N is the matrix order, and Label(N) is the address reference label for the N-th column. The 
address reference label is discussed in the next section.

3.6  Data Storage Scheme

Data storage scheme must be declared in a Fortran program, for example:

                REAL (4) :: A(1,1)

where variable A here is a single precision profile for matrix [A]. For other kinds of variable, 
profile  must  be  properly  declared.  Then,  replace  the  column index,  for  example  j,  with  the 
address reference label, for example Label(J). The coefficient Aij  in the upper triangular part of 
matrix  [A]  is  programmed  in  a  Fortran  program  as  A(I,Label(J)).  The  following  algorithm 
defines the address reference labels:

(1) Set Label(1) = 1
(2) For i = 2 to N, do the following
       Label(i) = Label(i-1) + [ number of non-zero fill-ins

above the diagonal in the i-th column ] 

For the example in form (3.1),  the address reference labels are 1, 2,  3, 4,  7,  8,  and 11. 
Equation (3.2) computes 17 non-zero fill-ins that may be checked from the form (3.1). In the i-th 
column, the number of non-zero fill-ins above the diagonal is equal to the following:

i-[the row index of the first non-zero fill-in]

Therefore, the first non-zero fill-in in the i-th column is as:

Label(i-1)-Label(i)+i (3.3)

3.7  Failure of Calling Request

If a calling request fails, solving procedure meets a diagonal coefficient that is very small 
and is almost negligible compared to unity.
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The  subroutines  introduced  in  this  chapter  deal  with  symmetric  and  positive  definite 
systems without  a consideration of pivoting.  Failure  of  request  does  not  mean that  the input 
matrix is absolutely not positive definite. A pivoting may continue execution. However, pivoting 
not  only  destroys  the  symmetry  but  also  disturbs  sparsity.  If  a  pivoting  is  necessary,  try  a 
constant-bandwidth solver with partial pivoting or a dense solver with pivoting.

3.8  Fortran Example

For a given system [A]{X}={B}, the left side matrix [A] and the right side vector {B} are 
defined as follows:

in which the order N=7. A Fortran program for decomposition and substitution is as follows. 
Subroutines “Input” and “Output” have data storage scheme. Subroutine “Decompose_VSP_4” 
decomposes  matrix  [A],  and subroutine  “Substitute_VSP_4”  performs forward  and backward 
substitutions.

!  *** Example program ***
!  define variables where the length of A is determined by equation (3.2)
!
        Integer (4), PARAMETER :: N = 7
        REAL (4) :: A(17),X(N)
        INTEGER (4) :: Label(N)
        LOGICAL (4) :: NoGood
        DATA X/5.0,41.0,12.0,9.0,303.0,21.0,23.0/
        DATA Label/1,2,4,6,7,8,11/
!
!  input the upper triangular part of [A]
!
        CALL Input(A,Label)
!
!  decompose in parallel
!
        CALL Decompose_VSP_4(A,N,Label,NoGood)
!
!  stop if NoGood=.True.
!
        IF(NoGood) STOP 'Cannot be decomposed'
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!
!  perform substitutions in parallel
!
        CALL Substitute_VSP_4(A,N,Label,X)
!
!  output decomposed matrix
!
        CALL Output(A,N,Label)
!
!  output the solution
!
        Write(*,'('' Solution is as:'')')
        Write(*,*) X
!
!  laipe done
!
        call laipeDone
!
        STOP
        END
        SUBROUTINE Input(A,Label)
!
!
!  routine to demonstrate an application of data storage scheme
!  (A)FORTRAN CALL: CALL Input(A,Label)
!     1.A: <R4> profile of matrix [A], dimension(*)
!     2.Label: <I4> address reference labels, dimension(*)
!
!  dummy arguments
!
        INTEGER (4) :: Label(1)
        REAL (4) :: A(1,1)
!
!  input
!
        A(1,Label(1))= 1.0
        A(1,Label(2))= 4.0
        A(2,Label(2))=25.0
        A(1,Label(3))= 2.0
        A(2,Label(3))=29.0
        A(3,Label(3))=88.0
        A(2,Label(4))=14.0
        A(3,Label(4))=34.0
        A(4,Label(4))=89.0
        A(4,Label(5))=23.0
        A(5,Label(5))=45.0
        A(5,Label(6))= 7.0
        A(6,Label(6))=22.0
        A(4,Label(7))= 1.0
        A(5,Label(7))= 3.0
        A(6,Label(7))= 2.0
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        A(7,Label(7))= 9.0
!
        RETURN
        END
        SUBROUTINE Output(A,N,Label)
!
!
!  routine to output the decomposed matrix by data storage scheme
!  (A)FORTRAN CALL: CALL Output(A,N,Label)
!     1.A: <R4> profile of matrix [A], dimension(*)
!     2.N: <I4> order of matrix [A]
!     3.Label: <I4> address reference label, dimension(*)
!
!  dummy arguments
!
        INTEGER (4) :: N,Label(1)
        REAL (4) :: A(1,1)
!
!  local variables
!
        INTEGER (4) :: I4TEMP,Column,Row
!
!  output the coefficients on non-zero fill-ins
!  where the lower bound of "Row" is computed by equation (3.3)
!
        WRITE(*,'('' Row  Column  Coefficient'')')
        WRITE(*,'(I4,I6,F9.3)') 1,1,A(1,1)
        DO I4TEMP=2,N
              Column=Label(I4TEMP)
              DO Row=Label(I4TEMP-1)-Column+I4TEMP, I4TEMP
                     WRITE(*,'(I4,I6,F9.3)') Row,I4TEMP, A(Row,Column)
              END DO
        END DO
!
        RETURN
        END
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Chapter 4. Dense, Symmetric, and
Positive Definite Systems

4.1  Purpose

This chapter has subroutines for the solution of [A]{X}={B} where the left side matrix [A] 
is dense, symmetric, and positive definite. The non-zero fill-ins in the lower triangular part of 
matrix [A] have a shape, for example, as:

where the symbol * indicates non-zero fill-ins. Three types of subroutine are introduced in the 
chapter,  which perform the following functions:

1. Decompose  matrix  [A]  into  the  product  of  [L ][L ]T where  matrix  [L]  is  the  lower 
triangular matrix.

2. Perform forward and backward substitutions.
3. Solve [A]{X}={B} in a single call.

Decomposition and substitution must be called in order, and work together as a pair. No 
pivoting is applied to the subroutines introduced in this chapter. Subroutines are as follows:

Decompose_DSP_4
Decompose_DSP_8
Decompose_DSP_10
Decompose_DSP_16
Decompose_DSP_Z4
Decompose_DSP_Z8
Decompose_DSP_Z10
Decompose_DSP_Z16

Substitute_DSP_4
Substitute_DSP_8
Substitute_DSP_10
Substitute_DSP_16
Substitute_DSP_Z4
Substitute_DSP_Z8
Substitute_DSP_Z10
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Substitute_DSP_Z16

Solution_DSP_4
Solution_DSP_8
Solution_DSP_10
Solution_DSP_16
Solution_DSP_Z4
Solution_DSP_Z8
Solution_DSP_Z10
Solution_DSP_Z16

4.2  Fortran Syntax for Subroutine Decompose

The following subroutines decompose [A] into [A]= [L ][L ]T . Syntax is as follows:

Decompose_DSP_4(A_io, N_i, Label_i, NoGood_o)
Decompose_DSP_8(A_io, N_i, Label_i, NoGood_o)
Decompose_DSP_10(A_io, N_i, Label_i, NoGood_o)
Decompose_DSP_16(A_io, N_i, Label_i, NoGood_o)
Decompose_DSP_Z4(A_io, N_i, Label_i, NoGood_o)
Decompose_DSP_Z8(A_io, N_i, Label_i, NoGood_o)
Decompose_DSP_Z10(A_io, N_i, Label_i, NoGood_o)
Decompose_DSP_Z16(A_io, N_i, Label_i, NoGood_o)

where

1. The argument A_io, array whose kind must be consistent with subroutine name convention, is 
the profile of matrix [A] that inputs the original matrix and returns the result if the variable 
NoGood_o is false. For the definition of profile, please see section 4.5.

2. The argument N_i, an INTEGER(4) variable, is the order of matrix [A]. 
3. The argument Label_i, an INTEGER(4) array, is the address reference label. For the 

definition of address reference label, please see section 4.6.
4. The argument NoGood_o, a LOGICAL(4) variable, is a flag that indicates if the input matrix 

[A]  is  suitable  for  the  subroutine.  If  NoGood_o=.True.,  the  input  matrix  [A]  cannot  be 
decomposed  by the  subroutine  and  there  is  no output  from the  subroutine;  otherwise  the 
profile A_io returns the decomposed matrix [L]. For the situation where NoGood_o=.True., 
please see section 4.7.

4.3  Fortran Syntax for Subroutine Substitute

The following subroutines perform forward and backward substitutions. Syntax is as 
follows:

Substitute_DSP_4(A_i, N_i, Label_i, sX_io)
Substitute_DSP_8(A_i, N_i, Label_i, sX_io)
Substitute_DSP_10(A_i, N_i, Label_i, sX_io)
Substitute_DSP_16(A_i, N_i, Label_i, sX_io)
Substitute_DSP_Z4(A_i, N_i, Label_i, sX_io)
Substitute_DSP_Z8(A_i, N_i, Label_i, sX_io)
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Substitute_DSP_Z10(A_i, N_i, Label_i, sX_io)
Substitute_DSP_Z16(A_i, N_i, Label_i, sX_io)

where

1. The argument A_i, array whose kind must be consistent with subroutine name convention, is 
the profile of matrix [A] that inputs the result from decomposition.

2. The argument N_i, an INTEGER(4) variable, is the order of matrix [A].
3. The  argument  Label_i,  an  INTEGER(4)  array,  is  the  address  reference  label.  For  the 

definition of address reference label, please see section 4.6.
4. The argument X_io, array whose kind must be consistent with subroutine name convention, 

inputs the right side vector, and returns the solution.

4.4  Fortran Syntax for Subroutine Solution

The following subroutines  first  decompose [A]  into the product  of  [L ][L ]T ,  and then 
perform forward and backward substitutions. Solve [A]{X}={B} in a single call. The syntax is as 
follows:

Solution_DSP_4(A_io, N_i, Label_i, X_io, NoGood_o)
Solution_DSP_8(A_io, N_i, Label_i, X_io, NoGood_o)
Solution_DSP_10(A_io, N_i, Label_i, X_io, NoGood_o)
Solution_DSP_16(A_io, N_i, Label_i, X_io, NoGood_o)
Solution_DSP_Z4(A_io, N_i, Label_i, X_io, NoGood_o)
Solution_DSP_Z8(A_io, N_i, Label_i, X_io, NoGood_o)
Solution_DSP_Z10(A_io, N_i, Label_i, X_io, NoGood_o)
Solution_DSP_Z16(A_io, N_i, Label_i, X_io, NoGood_o)

where

1. The argument A_io, array whose kind must be consistent with subroutine name convention, is 
the profile of matrix [A], that inputs the original matrix and returns the decomposed result if 
the variable NoGood_o is false. For the definition of profile, please see section 4.5.

2. The argument N_i, an INTEGER(4) variable, is the order of matrix [A].
3. The  argument  Label_i,  an  INTEGER(4)  array,  is  the  address  reference  label.  For  the 

definition of address reference label, please see section 4.6.
4. The argument X_io, array whose kind must be consistent with subroutine name convention, 

inputs the right side vector, and returns the solution if NoGood_o is false.
5. The argument NoGood_o, a LOGICAL(4) variable, is a flag that indicates if the input matrix 

[A] is suitable for the subroutine. If NoGood_o=.True., the input system cannot be solved by 
the subroutine and there is no output from the subroutine; otherwise the profile A_io returns 
the  decomposed matrix  [L]  and vector  X_io  returns  the  solution.  For  the  situation  where 
NoGood_o=.True., please see section 4.7.

4.5  Profile

Profile for a dense, symmetric, and positive definite matrix is as:
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where the symbol * represents non-zero fill-ins. Total length of profile is determined as

profile size = ( (N+1) * N ) / 2 (4.2)

where N is the matrix order.

4.6  Data Storage Scheme

Data  storage  scheme  for  a  dense  and  symmetric  matrix  must  be  declared  in  a  Fortran 
program, for example:

                REAL (4) :: A(1,1)

where variable A here is a single precision profile for a matrix [A]. For other kinds of variable, 
profile must be properly declared. Then, replace column index, for example j, with the address 
reference label, for example Label(J). The coefficient Aij  in the lower triangular part of matrix 
[A] is programmed in a Fortran program as A(I,Label(J)). The following algorithm defines the 
address reference labels:

(1) Set Label(1) = 1
(2) For i = 2 to N, do the following
        Label(i) = Label(i-1) + [ number of non-zero fill-ins in the i-th column ] (4.3)

For the example in form (4.1),  the address reference labels are 1, 7,  12, 16, 19, 21, and 22. 
Equation (4.2) computes 28 non-zero fill-ins that may be checked from the form (4.1).

4.7  Failure of Calling Request

If a calling request fails, solving procedure meets a diagonal coefficient that is very small 
and is negligible compared to unity.

The  subroutines  introduced  in  this  chapter  deal  with  symmetric  and  positive  definite 
systems without  a consideration of pivoting.  Failure  of  request  does  not  mean that  the input 
matrix  is  indefinite.  A  pivoting  may  continue  execution.  However,  pivoting  may  destroy 
symmetry. If a pivoting is necessary, try a dense solver with pivoting. Pivoting procedure always 
takes more time, and is less efficient in parallel processing.

4.8  Fortran Example
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For a given system [A]{X}={B}, the left side matrix [A] and the right side vector {B} are 
defined as follows:

in which the order N=7. A Fortran program for decomposition and substitution is as follows. 
Subroutines “Input” and “Output” have data storage scheme. Subroutine “DenseLabel” based on 
equation (4.3)  generates address reference labels.  Two LAIPE subroutines are applied in this 
example:  one  is  subroutine  “Decompose_DSP_4”  that  decomposes  matrix  [A];  the  other  is 
subroutine “Substitute_DSP_4” that performs forward and backward substitutions.

!  *** Example program ***
!  define variables where the length of A is determined by equation (4.2)
!
        Integer (4),PARAMETER :: N=7
        REAL (4) :: A(((N+1)*N)/2),X(N)
        INTEGER (4) :: Label(N)
        LOGICAL (4) :: NoGood
        DATA X/21.0,141.0,2.0,9.0,333.0,1.0,3.0/
!
!  generate address reference labels
!
        CALL DenseLabel(Label,N)
!
!  input the lower triangular part of [A]
!
        CALL Input(A,Label)
!
!  decompose in parallel
!
        CALL Decompose_DSP_4(A,N,Label,NoGood)
!
!  stop if NoGood=.True.
!
        IF(NoGood) STOP 'Cannot be decomposed'
!
!  perform substitutions in parallel
!
        CALL Substitute_DSP_4(A,N,Label,X)
!
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!  output decomposed matrix
!
        CALL Output(A,N,Label)
!
!  output the solution
!
        Write(*,'('' Solution is as:'')')
        Write(*,*) X
!
!  laipe done
!
        call laipeDone
!
        STOP
        END

        SUBROUTINE DenseLabel(Label,N)
!
!
!  routine to generate address reference labels for a dense lower triangular matrix
!  (A)FORTRAN CALL: CALL DenseLabel(Label,N)
!     1.Label: <I4> return address reference labels, dimension(N)
!     2.N: <I4> order of matrix
!
!  dummy arguments
!
      INTEGER*4 Label(1),N
!
!  local variables
!
      INTEGER*4 I4TEMP,J4TEMP
!
!  generate address label
!
      I4TEMP=N-1
      Label(1)=1
      DO J4TEMP=2,N
             Label(J4TEMP)=Label(J4TEMP-1)+I4TEMP
             I4TEMP=I4TEMP-1
      END DO
!
      RETURN
      END
      SUBROUTINE Input(A,Label)
!
!
!  routine to demonstrate an application of the data storage scheme
!  (A)FORTRAN CALL: CALL Input(A,Label)
!     1.A: <R4> profile of matrix [A], dimension(*)
!     2.Label: <I4> the address reference labels, dimension(N)
!
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!  dummy arguments
!
        INTEGER*4 Label(1)
        REAL*4 A(1,1)
!
!  input
!

        A(1,Label(1))= 1.0
        A(2,Label(1))= 4.0
        A(3,Label(1))= 2.0
        A(4,Label(1))= 3.0
        A(5,Label(1))= 1.0
        A(6,Label(1))= 4.0
        A(7,Label(1))= 2.0
        A(2,Label(2))=25.0
        A(3,Label(2))=19.0
        A(4,Label(2))= 9.0
        A(5,Label(2))=-2.0
        A(6,Label(2))= 2.0
        A(7,Label(2))= 7.0
        A(3,Label(3))=44.0
        A(4,Label(3))=34.0
        A(5,Label(3))= 3.0
        A(6,Label(3))= 2.0
        A(7,Label(3))= 3.0
        A(4,Label(4))=89.0
        A(5,Label(4))= 0.0
        A(6,Label(4))=11.0
        A(7,Label(4))= 4.0
        A(5,Label(5))=45.0
        A(6,Label(5))= 7.0
        A(7,Label(5))= 3.0
        A(6,Label(6))=68.0
        A(7,Label(6))= 2.0
        A(7,Label(7))= 9.0
!
        RETURN
        END
        SUBROUTINE Output(A,N,Label)
!
!
!  routine to output the decomposed matrix by data storage scheme
!  (A)FORTRAN CALL: CALL Output(A,N,Label)
!     1.A: <R4> profile of matrix [A], dimension(*)
!     2.N: <I4> order of matrix [A]
!     3.Label: <I4> address reference labels, dimension(N)
!
!  dummy arguments
!
        INTEGER*4 N,Label(1)
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        REAL*4 A(1,1)
!
!  local variables
!
        INTEGER*4 Column,Row,I4TEMP
!
!  output the coefficients on non-zero fill-ins
!
        WRITE(*,'('' Row  Column  Coefficient'')')
        DO I4TEMP=1,N
              Column=Label(I4TEMP)
              DO Row=I4TEMP,N
                     WRITE(*,'(I4,I6,F9.3)') Row, I4TEMP, A(Row,Column)
              END DO
        END DO
!
        RETURN
        END
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Chapter 5. Constant-Bandwidth and Symmetric Systems

5.1  Purpose

This chapter has subroutines for the solution of [A]{X}={B} where the left side matrix [A] 
has a constant bandwidth and is symmetric. There is no consideration of definiteness of matrix 
[A]. The non-zero fill-ins in the lower triangular part of matrix [A] have a shape, for example, as:

Three  types  of  subroutine  are  introduced  in  this  chapter,  which  perform the  following 
functions:

1. Decompose  matrix  [A]  into  the  product  of  [L ][D ][ L ]T where  matrix  [L]  is  the  lower 
triangular matrix and matrix [D] is the diagonal matrix.

2. Perform forward and backward substitutions.
3. Solve [A]{X}={B} in a single call.

Decomposition and substitution must be called in order, and work together as a pair. No 
pivoting is applied to the subroutines introduced in this chapter. Subroutines are as follows:

Decompose_CSG_4
Decompose_CSG_8
Decompose_CSG_10
Decompose_CSG_16
Decompose_CSG_Z4
Decompose_CSG_Z8
Decompose_CSG_Z10
Decompose_CSG_Z16

Substitute_CSG_4
Substitute_CSG_8
Substitute_CSG_10
Substitute_CSG_16
Substitute_CSG_Z4
Substitute_CSG_Z8
Substitute_CSG_Z10
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Substitute_CSG_Z16

Solution_CSG_4
Solution_CSG_8
Solution_CSG_10
Solution_CSG_16
Solution_CSG_Z4
Solution_CSG_Z8
Solution_CSG_Z10
Solution_CSG_Z16

meSolution_CSG_4
meSolution_CSG_8
meSolution_CSG_10
meSolution_CSG_16
meSolution_CSG_Z4
meSolution_CSG_Z8
meSolution_CSG_Z10
meSolution_CSG_Z16

The  subroutines  with  a  prefix  "me",  i.e.,  meSolution_CSG_4,  are  multiple  entry  direct 
solvers  that  are  most  well  suitable  for  systems  with  a  small  bandwidth.  For  more  detailed 
discussions on multiple entry solvers, please see section 1.7.

5.2 Fortran Syntax for Subroutine Decompose

The following subroutines  decompose matrix  [A]  into [A]= [L ][D ][ L ]T .  Syntax is  as 
follows:

Decompose_CSG_4(A_io, N_i, LowerBandwidth_i, NoGood_o)
Decompose_CSG_8(A_io, N_i, LowerBandwidth_i, NoGood_o)
Decompose_CSG_10(A_io, N_i, LowerBandwidth_i, NoGood_o)
Decompose_CSG_16(A_io, N_i, LowerBandwidth_i, NoGood_o)
Decompose_CSG_Z4(A_io, N_i, LowerBandwidth_i, NoGood_o)
Decompose_CSG_Z8(A_io, N_i, LowerBandwidth_i, NoGood_o)
Decompose_CSG_Z10(A_io, N_i, LowerBandwidth_i, NoGood_o)
Decompose_CSG_Z16(A_io, N_i, LowerBandwidth_i, NoGood_o)

where

1. The argument A_io, array whose kind must be consistent with subroutine name convention, is 
the profile of matrix [A] that inputs the original matrix and returns the result if the variable 
NoGood_o is false. For the definition of profile, please see section 5.6.

2. The argument N_i, an INTEGER(4) variable, is the order of matrix [A].
3. The argument LowerBandwidth_i, an INTEGER(4) variable, is the lower bandwidth of matrix 

[A]. The lower bandwidth is the maximal number of non-zero fill-ins below the diagonal in a 
column.

4. The argument NoGood_o, a LOGICAL(4) variable, is a flag that indicates if the input matrix 
[A]  is  suitable  for  the  subroutine.  If  NoGood_o=.True.,  the  input  matrix  [A]  cannot  be 
decomposed  and  there  is  no  output  returned;  otherwise  the  profile  A_io  returns  the 
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decomposed  matrices  [L]  and  [D].  For  the  situation  where  NoGood_o=.True.,  please  see 
section 5.8.

5.3  Fortran Syntax for Subroutine Substitute

The following subroutines perform forward and backward substitutions. Syntax is as 
follows:

Substitute_CSG_4(A_i, N_i, LowerBandwidth_i, X_io)
Substitute_CSG_8(A_i, N_i, LowerBandwidth_i, X_io)
Substitute_CSG_10(A_i, N_i, LowerBandwidth_i, X_io)
Substitute_CSG_16(A_i, N_i, LowerBandwidth_i, X_io)
Substitute_CSG_Z4(A_i, N_i, LowerBandwidth_i, X_io)
Substitute_CSG_Z8(A_i, N_i, LowerBandwidth_i, X_io)
Substitute_CSG_Z10(A_i, N_i, LowerBandwidth_i, X_io)
Substitute_CSG_Z16(A_i, N_i, LowerBandwidth_i, X_io)

where

1. The argument A_i, array whose kind must be consistent with subroutine name convention, is 
the profile of matrix [A] that inputs the result from decomposition.

2. The argument N_i, an INTEGER(4) variable, is the order of matrix [A].
3. The argument LowerBandwidth_i, an INTEGER(4) variable, is the lower bandwidth of matrix 

[A]. The lower bandwidth is the maximal number of non-zero fill-ins below the diagonal in a 
column.

4. The argument X_io, array whose kind must be consistent with subroutine name convention, 
inputs the right side vector, and returns the solution.

5.4  Fortran Syntax for Subroutine Solution

The following subroutines first decompose [A] into the product of [L ][D ][ L ]T , and then 
perform forward and backward substitutions. Solve [A]{X}={B} in a single call. The syntax is as 
follows:

Solution_CSG_4(A_io, N_i, LowerBandwidth_i, X_io, NoGood_o)
Solution_CSG_8(A_io, N_i, LowerBandwidth_i, X_io, NoGood_o)
Solution_CSG_10(A_io, N_i, LowerBandwidth_i, X_io, NoGood_o)
Solution_CSG_16(A_io, N_i, LowerBandwidth_i, X_io, NoGood_o)
Solution_CSG_Z4(A_io, N_i, LowerBandwidth_i, X_io, NoGood_o)
Solution_CSG_Z8(A_io, N_i, LowerBandwidth_i, X_io, NoGood_o)
Solution_CSG_Z10(A_io, N_i, LowerBandwidth_i, X_io, NoGood_o)
Solution_CSG_Z16(A_io, N_i, LowerBandwidth_i, X_io, NoGood_o)

where

1. The argument A_io, array whose kind must be consistent with subroutine name convention, is 
the profile of matrix [A], that inputs the original matrix and returns the decomposed result if 
the variable NoGood_o is false. For the definition of profile, please see section 5.6.

2. The argument N_i, an INTEGER(4) variable, is the order of matrix [A].
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3. The argument LowerBandwidth_i, an INTEGER(4) variable, is the lower bandwidth of matrix 
[A]. The lower bandwidth is the maximal number of non-zero fill-ins below the diagonal in a 
column.

4. The argument X_io, array whose kind must be consistent with subroutine name convention, 
inputs the right side vector, and returns the solution if NoGood_o is false.

5. The argument NoGood_o, a LOGICAL(4) variable, is a flag that indicates if the input system 
is suitable for the subroutine. If NoGood_o=.True., the input system cannot be solved by the 
subroutine and there is no output returned; otherwise the profile A_io returns the decomposed 
matrices  [L]  and  [D],  and  vector  X_io  returns  the  solution.  For  the  situation  where 
NoGood_o=.True., please see section 5.8.

5.5  Fortran Syntax for Subroutine meSolution

The following subroutines solve the system [A][X]=[B] by multiple entry procedure, where 
[X] and [B] may be a matrix with multiple vectors, i.e., [X]=[{ X 1 } { X 2 } ...] and [B]=[{ B1 } 

{ B2 } ...]. Syntax is as follows:

meSolution_CSG_4(A_io,N_i,LowerBandwidth_i,X_io,Nset_i,WorkingSpace_x,NoGood_o)
meSolution_CSG_8(A_io,N_i,LowerBandwidth_i,X_io,Nset_i,WorkingSpace_x,NoGood_o)
meSolution_CSG_10(A_io,N_i,LowerBandwidth_i,X_io,Nset_i,WorkingSpace_x,NoGood_o)
meSolution_CSG_16(A_io,N_i,LowerBandwidth_i,X_io,Nset_i,WorkingSpace_x, NoGood_o)
meSolution_CSG_Z4(A_io,N_i,LowerBandwidth_i,X_io,Nset_i,WorkingSpace_x, NoGood_o)
meSolution_CSG_Z8(A_io,N_i,LowerBandwidth_i,X_io,Nset_i,WorkingSpace_x, NoGood_o)
meSolution_CSG_Z10(A_io,N_i,LowerBandwidth_i,X_io,Nset_i,WorkingSpace_x,NoGood_o)
meSolution_CSG_Z16(A_io,N_i,LowerBandwidth_i,X_io,Nset_i,WorkingSpace_x,NoGood_o)

where

1. The argument A_io, array whose kind must be consistent with subroutine name convention, is 
the profile of matrix [A] that inputs the original matrix. After returning from this subroutine, 
the content in array A_io is destroyed no matter if the calling request is successful or not. For 
the definition of profile, please see section 5.6.

2. The argument N_i, an INTEGER(4) variable, is the order of matrix [A].
3. The argument LowerBandwidth_i, an INTEGER(4) variable, is the lower bandwidth of matrix 

[A]. The lower bandwidth is the maximal number of non-zero fill-ins below the diagonal in a 
column. This subroutine is more efficient if the lower bandwidth is small.

4. The argument X_io, array whose kind must be consistent with subroutine name convention, 
inputs the right side vector(s), and returns the solution if NoGood_o is false.

5. The argument Nset_i, an INTEGER(4) variable, is the number of right side vectors.
6. The argument WorkingSpace_x, array whose kind must be consistent with subroutine name 

convention  and  providing  a  space  of  (2*N_i*LowerBandwidth_I)  elements,  is  a  working 
space.

7. The argument NoGood_o, a LOGICAL(4) variable, is a flag that indicates if the input matrix 
[A] is suitable for the subroutine. If NoGood_o=.True., the input system cannot be solved by 
this function and there is no output; otherwise the vector “X_io” returns the solution. For the 
situation NoGood_o=.True., please see section 5.8.

5.6  Profile
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Profile for a constant-bandwidth and symmetric matrix is as:

where the symbol * represents non-zero fill-ins and the symbol & indicates an extra memory 
space whose content is never used. Total length of profile is determined as

profile size = (N-1) * LowerBandwidth + N (5.2)

where N is the matrix order, and LowerBandwidth is the lower bandwidth.

5.7  Data Storage Scheme

Data storage scheme for a constant-bandwidth and symmetric matrix must be declared in a 
Fortran program, for example:

                INTEGER (4) :: LowerBandwidth
                REAL (4) :: A(LowerBandwidth,1)

where variable A here is a single precision profile for matrix [A]. For other kinds of variable, 
profile must be properly declared. Then, the coefficient Aij in the lower triangular part of matrix 
[A] is programmed in a Fortran program as A(I,J). 

5.8  Failure of Calling Request

If a  calling request  fails,  solving procedure meets a diagonal  coefficient  whose absolute 
value is very small and is almost negligible compared to unity.

The  subroutines  introduced  in  this  chapter  deal  with  symmetric  systems  without  a 
consideration of pivoting. Since a symmetric solver does not consider pivoting. Failure of request 
does not mean that the input matrix is absolutely singular. A pivoting may continue execution. 
However, pivoting may destroy symmetry. If a pivoting is necessary, try a solver with partial 
pivoting that will be discussed in chapter 13. A pivoting procedure always takes more time, and 
is less efficient in parallel processing.

5.9  Fortran Example
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For a given system [A]{X}={B}, the left side matrix [A] and the right side vector {B} are 
defined as follows:

in which the order N=7 and the lower bandwidth, denoted by LowerBandwidth, is 2. A Fortran 
program for  decomposition  and substitution  is  as  follows.  Subroutines  “Input”  and “Output” 
have data storage scheme. Subroutine “Decompose_CSG_4” decomposes matrix [A], subroutine 
“Substitute_CSG_4” performs forward and backward substitutions.

!  *** Example program ***
!  define variables where the length of A is determined by equation (5.2)
!
        Integer (4) , PARAMETER :: N=7
        Integer (4), PARAMETER :: LowerBandwidth=2
        REAL (4) :: A((N-1)*LowerBandwidth+N),sX(N)
        LOGICAL*4 NoGood
        DATA sX/21.0,11.0,122.0,19.0,333.0,1.0,3.0/
!
!  input the lower triangular part of [A]
!
        CALL Input(A,LowerBandwidth)
!
!  decompose in parallel
!
         CALL Decompose_CSG_4(A,N,LowerBandwidth,NoGood)
!
!  stop if NoGood=.True.
!
        IF(NoGood) STOP 'Cannot be decomposed'
!
!  perform substitutions in parallel
!
        CALL Substitute_CSG_4(A,N,LowerBandwidth,sX)
!
!  output decomposed matrix
!
        CALL Output(A,N,LowerBandwidth)
!
!  output the solution
!
        Write(*,'('' Solution is as:'')')
        Write(*,*) X
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!
!  laipe done
!
        call laipeDone
!
        STOP
        END
        SUBROUTINE Input(A,LowerBandwidth)
!
!
!  routine to demonstrate an application of data storage scheme
!  (A)FORTRAN CALL: CALL Input(A,LowerBandwidth)
!     1.A: <R4> profile of matrix [A], dimension(*)
!     2.LowerBandwidth: <I4> lower bandwidth
!
!  dummy arguments
!
        INTEGER (4) :: LowerBandwidth
        REAL (4) :: A(LowerBandwidth,1)
!
!  input
!
        A(1,1)= 1.0
        A(2,1)= 4.0
        A(3,1)= 2.0
        A(2,2)=25.0
        A(3,2)=29.0
        A(4,2)=99.0
        A(3,3)=14.0
        A(4,3)=34.0
        A(5,3)= 3.0
        A(4,4)=19.0
        A(5,4)=23.0
        A(6,4)=11.0
        A(5,5)= 5.0
        A(6,5)= 7.0
        A(7,5)= 3.0
        A(6,6)=22.0
        A(6,6)=22.0
        A(7,6)= 2.0
        A(7,7)= 9.0
!
        RETURN
        END
        SUBROUTINE Output(A,N,LowerBandwidth)
!
!
!  routine to output the decomposed matrix by data storage scheme
!  (A)FORTRAN CALL: CALL Output(A,N,LowerBandwidth)
!     1.A: <R4> profile of matrix [A], dimension(*)
!     2.N: <I4> order of matrix [A]
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!     3.LowerBandwidth: <I4> lower bandwidth
!
!  dummy arguments
!
        INTEGER (4) :: N,LowerBandwidth
        REAL (4) :: A(LowerBandwidth,1)
!
!  local variables
!
        INTEGER*4 Column,Row
!
!  output the coefficients on non-zero fill-ins
!
        WRITE(*,'('' Row  Column  Coefficient'')')
        DO Column=1,N
               DO Row=Column, MIN0(Column+LowerBandwidth,N)
                       WRITE(*,'(I4,I6,F9.3)') Row,Column, A(Row,Column)
               END DO
        END DO
!
        RETURN
        END
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Chapter 6.    Variable-Bandwidth and Symmetric Systems

6.1  Purpose

This chapter has subroutines for the solution of [A]{X}={B} where the left side matrix [A] 
has a variable bandwidth and is symmetric. There is no consideration of definiteness of matrix 
[A]. The non-zero fill-ins in the upper triangular part of matrix [A] have a shape, for example, as:

which  looks like  a  skyline  in  a  city,  and  is  sometimes called  skyline  solver.  Three  types  of 
subroutine are introduced in the chapter, which perform the following functions:

1. Decompose  matrix  [A]  into  the  product  of  [U ]T [D ][U ] where  matrix  [U]  is  the  upper 
triangular matrix and matrix [D] is the diagonal matrix.

2. Perform forward and backward substitutions.
3. Solve [A]{X}={B} in a single call.

Decomposition and substitution must be called in order, and work together as a pair. No 
pivoting is applied to the subroutines, which are as:

Decompose_VSG_4
Decompose_VSG_8
Decompose_VSG_10
Decompose_VSG_16
Decompose_VSG_Z4
Decompose_VSG_Z8
Decompose_VSG_Z10
Decompose_VSG_Z16

Substitute_VSG_4
Substitute_VSG_8
Substitute_VSG_10
Substitute_VSG_16
Substitute_VSG_Z4
Substitute_VSG_Z8
Substitute_VSG_Z10
Substitute_VSG_Z16

38



Solution_VSG_4
Solution_VSG_8
Solution_VSG_10
Solution_VSG_16
Solution_VSG_Z4
Solution_VSG_Z8
Solution_VSG_Z10
Solution_VSG_Z16

6.2  Fortran Syntax for Subroutine Decompose

The following subroutines decompose matrix [A] into [A]= [U ]T [D ][U ] .  Syntax is as 
follows:

Decompose_VSG_4(A_io, N_i, Label_i, NoGood_o)
Decompose_VSG_8(A_io, N_i, Label_i, NoGood_o)
Decompose_VSG_10(A_io, N_i, Label_i, NoGood_o)
Decompose_VSG_16(A_io, N_i, Label_i, NoGood_o)
Decompose_VSG_Z4(A_io, N_i, Label_i, NoGood_o)
Decompose_VSG_Z8(A_io, N_i, Label_i, NoGood_o)
Decompose_VSG_Z10(A_io, N_i, Label_i, NoGood_o)
Decompose_VSG_Z16(A_io, N_i, Label_i, NoGood_o)

where

1. The argument A_io, array whose kind must be consistent with subroutine name convention, is 
the profile of matrix [A] that inputs the original matrix and returns the result if the variable 
NoGood_o is false. For the definition of profile, please see section 6.5.

2. The argument N_i, an INTEGER(4) variable, is the order of matrix [A].
3. The  argument  Label_i,  an  INTEGER(4)  array,  is  the  address  reference  label.  For  the 

definition of address reference label, please see section 6.6.
4. The argument NoGood_o, a LOGICAL(4) variable, is a flag that indicates if the input matrix 

[A]  is  suitable  for  decomposition.  If  NoGood_o=.True.,  the  input  matrix  [A]  cannot  be 
decomposed  and  there  is  no  output  returned;  otherwise  the  profile  A_io  returns  the 
decomposed  matrices  [U]  and  [D].  For  the  situation  where  NoGood_o=.True.,  please  see 
section 6.7.

6.3  Fortran Syntax for Subroutine Substitute

The  following  subroutines  perform  forward  and  backward  substitutions.  Syntax  is  as 
follows:

Substitute_VSG_4(A_i, N_i, Label_i, X_io)
Substitute_VSG_8(A_i, N_i, Label_i, X_io)
Substitute_VSG_10(A_i, N_i, Label_i, X_io)
Substitute_VSG_16(A_i, N_i, Label_i, X_io)
Substitute_VSG_Z4(A_i, N_i, Label_i, X_io)
Substitute_VSG_Z8(A_i, N_i, Label_i, X_io)
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Substitute_VSG_Z10(A_i, N_i, Label_i, X_io)
Substitute_VSG_Z16(A_i, N_i, Label_i, X_io)

where

1. The argument A_i, array whose kind must be consistent with subroutine name convention, is 
the profile of matrix [A] that inputs the result from decomposition.

2. The argument N_i, an INTEGER(4) variable, is the order of matrix [A].
3. The  argument  Label_i,  an  INTEGER(4)  array,  is  the  address  reference  label.  For  the 

definition of address reference label, please see section 6.6.
4. The argument X_io, array whose kind must be consistent with subroutine name convention, 

inputs the right side vector, and returns the solution.

6.4  Fortran Syntax for Subroutine Solution

The following subroutines first decompose matrix [A] into the product of [U ]T [D ][ [U ] , 
and then perform forward and backward substitutions. Solve the system [A]{X}={B} in a single 
call. Syntax is as follows:

Solution_VSG_4(A_io, N_i, Label_i, X_io, NoGood_o)
Solution_VSG_8(A_io, N_i, Label_i, X_io, NoGood_o)
Solution_VSG_10(A_io, N_i, Label_i, X_io, NoGood_o)
Solution_VSG_16(A_io, N_i, Label_i, X_io, NoGood_o)
Solution_VSG_Z4(A_io, N_i, Label_i, X_io, NoGood_o)
Solution_VSG_Z8(A_io, N_i, Label_i, X_io, NoGood_o)
Solution_VSG_Z10(A_io, N_i, Label_i, X_io, NoGood_o)
Solution_VSG_Z16(A_io, N_i, Label_i, X_io, NoGood_o)

where

1. The argument A_io, array whose kind must be consistent with subroutine name convention, is 
the profile of matrix [A], that inputs the original matrix and returns the decomposed result if 
the variable NoGood_o is false. For the definition of profile, please see section 6.5.

2. The argument N_i, an INTEGER(4) variable, is the order of matrix [A].
3. The  argument  Label_i,  an  INTEGER(4)  array,  is  the  address  reference  label.  For  the 

definition of address reference label, please see section 6.6.
4. The argument X_io, array whose kind must be consistent with subroutine name convention, 

inputs the right side vector, and returns the solution if NoGood_o is false.
5. The argument NoGood_o, a LOGICAL(4) variable, is a flag that indicates if the input system 

is suitable for the subroutine. If NoGood_o=.True., the input system cannot be solved by the 
subroutine and there is no output returned; otherwise the profile A_io returns the decomposed 
matrices  [U]  and  [D],  and  vector  X_io  returns  the  solution.  For  the  situation  where 
NoGood_o=.True., please see section 6.7.

6.5  Profile

Profile for a variable-bandwidth and symmetric matrix is as:
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where the symbol * represents non-zero fill-ins. Total length of profile is determined as

profile size = Label(N)-1+ N (6.2)

where N is the matrix order, and Label(N) is the address reference label for the N-th column. The 
address reference label is discussed in the next section.

6.6  Data Storage Scheme

Data storage scheme for a variable-bandwidth and symmetric matrix must be declared in a 
Fortran program, for example:

REAL (4) :: A(1,1)

where variable A here is a single precision profile for matrix [A]. For other kinds of variable, 
profile  must  be  properly  declared.  Then,  replace  the  column index,  for  example  j,  with  the 
address reference label, for example Label(J). The coefficient Aij in the upper triangular part of 
matrix [A] is programmed in a Fortran program as A(I,Label(J)). Address reference labels are 
defined by the following algorithm where N is the order of matrix [A]:

(1) Set Label(1) = 1
(2) For i = 2 to N, do the following

Label(i) = Label(i-1) + [ number of non-zero fill-ins
above the diagonal in the i-th column ] (6.3)

For the example in form (6.1), the address reference labels are 1, 2, 3, 4, 7, 8, and 11. Equation 
(6.2) computes 17 non-zero fill-ins that may be checked from the form (6.1). In the i-th column, 
the number of non-zero fill-ins above the diagonal is equal to the following:

i-[the row index of the first non-zero fill-in]

Therefore, the first non-zero fill-in in the i-th column is as:

Label(i-1)-Label(i)+i (6.4)
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6.7  Failure of Calling Request

If a  calling request  fails,  solving procedure meets a diagonal  coefficient  whose absolute 
value is very small and is negligible compared to unity.

The  subroutines  introduced  in  this  chapter  deal  with  symmetric  systems  without  a 
consideration of pivoting. Failure of request does not mean that the input matrix is absolutely 
singular. A pivoting may continue execution. However, pivoting may destroy not only symmetric 
property but also sparsity. If a pivoting is necessary, try a constant-bandwidth solver with partial 
pivoting or a dense solver with pivoting.

6.8  Fortran Example

For a given system [A]{X}={B}, the left side matrix [A] and the right side vector {B} are 
defined as follows:

in which the order N=7. A Fortran program for decomposition and substitution is as follows. 
Subroutines “Input” and “Output” have data storage scheme. Subroutine “Decompose_VSG_4” 
decomposes  matrix  [A],  and subroutine  “Substitute_VSG_4” performs forward and backward 
substitutions.

!  *** Example program ***
!  define variables where the length of A is determined by equation (6.2)
!
        PARAMETER (N=7)
        REAL*4 A(17),X(N)
        INTEGER*4 Label(N)
        LOGICAL*4 NoGood
        DATA X/5.0,41.0,12.0,9.0,303.0,21.0,23.0/
        DATA Label/1,2,4,6,7,8,11/
!
!  input the upper triangular part of [A]
!
        CALL Input(A,Label)
!
!  decompose in parallel
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!
        CALL Decompose_VSG_4(A,N,Label, NoGood)
!
!  stop if NoGood=.True.
!
        IF(NoGood) STOP 'Cannot be decomposed'
!
!  perform substitutions in parallel
!
        CALL Substitute_VSG_4(A,N,Label,X)
!
!  output decomposed matrix
!
        CALL Output(A,N,Label)
!
!  output the solution
!
        Write(*,'('' Solution is as:'')')
        Write(*,*) X
!
!  laipe done
!
        call laipeDone
!
        STOP
        END

        SUBROUTINE Input(A,Label)
!
!
!  routine to demonstrate an application of data storage scheme
!  (A)FORTRAN CALL: CALL Input(A,Label)
!     1.A: <R4> profile of matrix [A], dimension(*)
!     2.Label: <I4> address reference labels, dimension(*)
!
!  dummy arguments
!
        INTEGER*4 Label(1)
        REAL*4 A(1,1)
!
!  input
!
        A(1,Label(1))= 1.0
        A(1,Label(2))= 4.0
        A(2,Label(2))=25.0
        A(1,Label(3))=72.0
        A(2,Label(3))=29.0
        A(3,Label(3))=14.0
        A(2,Label(4))=44.0
        A(3,Label(4))=34.0
        A(4,Label(4))=19.0
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        A(4,Label(5))=23.0
        A(5,Label(5))= 8.0
        A(5,Label(6))=37.0
        A(6,Label(6))= 2.0
        A(4,Label(7))= 9.0
        A(5,Label(7))= 3.0
        A(6,Label(7))= 2.0
        A(7,Label(7))= 1.0
!
        RETURN
        END
        SUBROUTINE Output(A,N,Label)
!
!
!  routine to output the decomposed matrix by data storage scheme
!  (A)FORTRAN CALL: CALL Output(A,N,Label)
!     1.A: <R4> profile of matrix [A], dimension(*)
!     2.N: <I4> order of matrix [A]
!     3.Label: <I4> address reference labels, dimension(*)
!
!  dummy arguments
!
        INTEGER*4 N,Label(1)
        REAL*4 A(1,1)
!
!  local variables
!
        INTEGER*4 I4TEMP,Column,Row
!
!  output the coefficients on non-zero fill-ins where the lower bound
!  of "Row" is computed by equation (6.4)
!
        WRITE(*,'('' Row  Column  Coefficient'')')
        WRITE(*,'(I4,I6,F9.3)') 1,1,A(1,1)
        DO I4TEMP=2,N
              Column=Label(I4TEMP)
              DO Row=Label(I4TEMP-1)-Column+I4TEMP, I4TEMP
                     WRITE(*,'(I4,I6,F9.3)') Row,I4TEMP, A(Row,Column)
              END DO
        END DO
!
        RETURN
        END
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Chapter 7.     Dense and Symmetric Systems

7.1  Purpose

This chapter has subroutines for the solution of [A]{X}={B} where the left side matrix [A] 
is dense and symmetric. There is no consideration of definiteness of matrix [A]. The non-zero 
fill-ins in the lower triangular part of matrix [A] have a shape, for example, as:

where the symbol * indicates non-zero fill-ins. Three types of subroutine are introduced in this 
chapter, which perform the following functions:

1. Decompose  matrix  [A]  into  the  product  of  [L ][D ][ L ]T  where  matrix  [L]  is  the  lower 
triangular matrix and matrix [D] is the diagonal matrix.

2. Perform forward and backward substitutions.
3. Solve [A]{X}={B} in a single call.

Decomposition and substitution must be called in order, and work together as a pair. No 
pivoting is applied to the following subroutines:

Decompose_DSG_4
Decompose_DSG_8
Decompose_DSG_10
Decompose_DSG_16
Decompose_DSG_Z4
Decompose_DSG_Z8
Decompose_DSG_Z10
Decompose_DSG_Z16

Substitute_DSG_4
Substitute_DSG_8
Substitute_DSG_10
Substitute_DSG_16
Substitute_DSG_Z4
Substitute_DSG_Z8
Substitute_DSG_Z10
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Substitute_DSG_Z16

Solution_DSG_4
Solution_DSG_8
Solution_DSG_10
Solution_DSG_16
Solution_DSG_Z4
Solution_DSG_Z8
Solution_DSG_Z10
Solution_DSG_Z16

7.2  Fortran Syntax for Subroutine Decompose

The following subroutines  decompose matrix  [A]  into [A]= [L ][D ][ L ]T .  Syntax is  as 
follows:

Decompose_DSG_4(A_io, N_i, Label_i, NoGood_o)
Decompose_DSG_8(A_io, N_i, Label_i, NoGood_o)
Decompose_DSG_10(A_io, N_i, Label_i, NoGood_o)
Decompose_DSG_16(A_io, N_i, Label_i, NoGood_o)
Decompose_DSG_Z4(A_io, N_i, Label_i, NoGood_o)
Decompose_DSG_Z8(A_io, N_i, Label_i, NoGood_o)
Decompose_DSG_Z10(A_io, N_i, Label_i, NoGood_o)
Decompose_DSG_Z16(A_io, N_i, Label_i, NoGood_o)

where

1. The argument A_io, array whose kind must be consistent with subroutine name convention, is 
the profile of matrix [A] that inputs the original matrix and returns the result if the variable 
NoGood_o is false. For the definition of profile, please see section 7.5.

2. The argument N_i, an INTEGER(4) variable, is the order of matrix [A].
3. The  argument  Label_i,  an  INTEGER(4)  array,  is  the  address  reference  label.  For  the 

definition of address reference label, please see section 7.6.
4. The argument NoGood_o, a LOGICAL(4) variable, is a flag that indicates if the input matrix 

[A]  is  suitable  for  the  subroutine.  If  NoGood_o=.True.,  the  input  matrix  [A]  cannot  be 
decomposed  and  there  is  no  output  returned;  otherwise  the  profile  A_io  returns  the 
decomposed matrix [L]. For the situation where NoGood_o=.True., please see section 7.7.

7.3  Fortran Syntax for Subroutine Substitute

The  following  subroutines  perform  forward  and  backward  substitutions.  Syntax  is  as 
follows:

Substitute_DSG_4(A_i, N_i, Label_i, X_io)
Substitute_DSG_8(A_i, N_i, Label_i, X_io)
Substitute_DSG_10(A_i, N_i, Label_i, X_io)
Substitute_DSG_16(A_i, N_i, Label_i, X_io)
Substitute_DSG_Z4(A_i, N_i, Label_i, X_io)
Substitute_DSG_Z8(A_i, N_i, Label_i, X_io)
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Substitute_DSG_Z10(A_i, N_i, Label_i, X_io)
Substitute_DSG_Z16(A_i, N_i, Label_i, X_io)

where

1. The argument A_i, array whose kind must be consistent with subroutine name convention, is 
the profile of matrix [A] that inputs the result from decomposition.

2. The argument N_i, an INTEGER(4) variable, is the order of matrix [A].
3. The  argument  Label_i,  an  INTEGER(4)  array,  is  the  address  reference  label.  For  the 

definition of address reference label, please see section 7.6.
4. The argument X_io, array whose kind must be consistent with subroutine name convention, 

inputs the right side vector, and returns the solution.

7.4  Fortran Syntax for Subroutine Solution

The following subroutines first decompose matrix [A] into the product of  [L ][D ][ L ]T , 
and then perform forward and backward substitutions. Solve [A]{X}={B} in a single call. Syntax 
is as follows:

Solution_DSG_4(A_io, N_i, Label_i, X_io, NoGood_o)
Solution_DSG_8(A_io, N_i, Label_i, X_io, NoGood_o)
Solution_DSG_10(A_io, N_i, Label_i, X_io, NoGood_o)
Solution_DSG_16(A_io, N_i, Label_i, X_io, NoGood_o)
Solution_DSG_Z4(A_io, N_i, Label_i, X_io, NoGood_o)
Solution_DSG_Z8(A_io, N_i, Label_i, X_io, NoGood_o)
Solution_DSG_Z10(A_io, N_i, Label_i, X_io, NoGood_o)
Solution_DSG_Z16(A_io, N_i, Label_i, X_io, NoGood_o)

where

1. The argument A_io, array whose kind must be consistent with subroutine name convention, is 
the profile of matrix [A], that inputs the original matrix and returns the decomposed result if 
the variable NoGood_o is false. For the definition of profile, please see section 7.5.

2. The argument N_i, an INTEGER(4) variable, is the order of matrix [A].
3. The  argument  Label_i,  an  INTEGER(4)  array,  is  the  address  reference  label.  For  the 

definition of address reference label, please see section 7.6.
4. The argument X_io, array whose kind must be consistent with subroutine name convention, 

inputs the right side vector, and returns the solution if NoGood_o is false.
5. The argument NoGood_o, a LOGICAL(4) variable, is a flag that indicates if the input system 

is suitable for the subroutine. If NoGood_o=.True., the input system cannot be solved by the 
subroutine and there is no output returned; otherwise the profile A_io returns the decomposed 
matrix [L], and vector X_io returns the solution. For the situation where NoGood_o=.True., 
please see section 7.7.

7.5  Profile

Profile for a dense and symmetric matrix is as:
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where the symbol * represents non-zero fill-ins. Total length of profile is determined as

profile size = ( (N+1) * N ) / 2 (7.2)

where N is the matrix order.

7.6  Data Storage Scheme

Data  storage  scheme  for  a  dense  and  symmetric  matrix  must  be  declared  in  a  Fortran 
program, for example:

                REAL (4) :: A(1,1)

where variable A here  is a single precision profile for matrix [A]. For other kinds of variable, 
profile  must  be  properly  declared.  Then,  replace  the  column index,  for  example  j,  with  the 
address reference label, for example Label(J). The coefficient Aij  in the lower triangular part of 
matrix [A] is programmed in a Fortran program as A(I,Label(J)). The address reference labels are 
defined by the following algorithm where N is the order of matrix [A]:

(1) Set Label(1) = 1
(2) For i = 2 to N, do the following:

Label(i) = Label(i-1) + [ number of non-zero fill-ins in the i-th column ] (7.3)

For the example in form (7.1),  the address reference labels are 1, 7,  12, 16, 19, 21, and 22. 
Equation (7.2) computes 28 non-zero fill-ins that may be checked from the form (7.1).

7.7  Failure of Calling Request

If a  calling request  fails,  solving procedure meets a diagonal  coefficient  whose absolute 
value is very small and is negligible compared to  unity.

The  subroutines  introduced  in  this  chapter  deal  with  symmetric  systems  without  a 
consideration of pivoting. Failure of request does not mean that the input matrix is absolutely 
singular. A pivoting may continue execution. However, pivoting may destroy symmetry. A solver 
with a pivoting usually does not consider symmetry. If pivoting is necessary, try a dense solver 
with  pivoting.  A pivoting procedure  always takes  more time and is  less  efficient  in  parallel 
processing.

7.8  Fortran Example
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For a given system [A]{X}={B}, the left side matrix [A] and the right side vector {B} are 
defined as follows:

in which the order N=7. A Fortran program for decomposition and substitution is as follows. 
Subroutines “Input” and “Output” have data storage scheme. Subroutine “DenseLabel” based on 
equation (7.3) generates address reference labels. Subroutine “Decompose_DSG_4” decomposes 
matrix [A], and subroutine “Substitute_DSG_4” performs forward and backward substitutions.

!  *** Example program ***
!  define variables where the length of A is determined by equation (7.2)
!
        PARAMETER (N=7)
        REAL*4 A(((N+1)*N)/2),X(N)
        INTEGER*4 Label(N)
        LOGICAL*4 NoGood
        DATA X/21.0,141.0,2.0,9.0,333.0,1.0,3.0/
!
!  generate address reference labels
!
        CALL DenseLabel(Label,N)
!
!  input the lower triangular part of [A]
!
        CALL Input(A,Label)
!
!  decompose in parallel
!
        CALL Decompose_DSG_4(A,N,Label,NoGood)
!
!  stop if NoGood=.True.
!
        IF(NoGood) STOP 'Cannot be decomposed'
!
!  perform substitutions in parallel
!
        CALL Substitute_DSG_4(A,N,Label,X)
!
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!  output decomposed matrix
!
        CALL Output(A,N,Label)
!
!  output the solution
!
        Write(*,'('' Solution is as:'')')
        Write(*,*) X
!
!  laipe done
!
        call  laipeDone
!
        STOP
        END
        SUBROUTINE DenseLabel(Label,N)
!
!
!  routine to generate address reference labels for a dense lower triangular matrix
!  (A)FORTRAN CALL: CALL DenseLabel(Label,N)
!     1.Label: <I4> return the address reference labels, dimension(N)
!     2.N: <I4> order of matrix
!
!  dummy arguments
!
        INTEGER*4 Label(1),N
!
!  local variables
!
        INTEGER*4 I4TEMP,J4TEMP
!
!  generate address label
!
        I4TEMP=N-1
        Label(1)=1
        DO J4TEMP=2,N
               Label(J4TEMP)=Label(J4TEMP-1)+I4TEMP
               I4TEMP=I4TEMP-1
        END DO
!
        RETURN
        END
        SUBROUTINE Input(A,Label)
!
!
!  routine to demonstrate an application of data storage scheme
!  (A)FORTRAN CALL: CALL Input(A,Label)
!     1.A: <R4> profile of matrix [A], dimension(*)
!     2.Label: <I4> the address reference labels, dimension(N)
!
!  dummy arguments
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!
        INTEGER*4 Label(1)
        REAL*4 A(1,1)
!
!  input
!
        A(1,Label(1))= 1.0
        A(2,Label(1))= 4.0
        A(3,Label(1))= 2.0
        A(4,Label(1))= 3.0
        A(5,Label(1))=12.0
        A(6,Label(1))= 4.0
        A(7,Label(1))= 2.0
        A(2,Label(2))= 5.0
        A(3,Label(2))=29.0
        A(4,Label(2))= 9.0
        A(5,Label(2))=23.0
        A(6,Label(2))= 2.0
        A(7,Label(2))=27.0
        A(3,Label(3))= 4.0
        A(4,Label(3))=34.0
        A(5,Label(3))= 3.0
        A(6,Label(3))=22.0
        A(7,Label(3))= 3.0
        A(4,Label(4))= 8.0
        A(5,Label(4))=23.0
        A(6,Label(4))=11.0
        A(7,Label(4))=49.0
        A(5,Label(5))=45.0
        A(6,Label(5))= 7.0
        A(7,Label(5))=33.0
        A(6,Label(6))= 2.0
        A(7,Label(6))=12.0
        A(7,Label(7))= 9.0
!
        RETURN
        END
        SUBROUTINE Output(A,N,Label)
!
!
!  routine to output the decomposed matrix by data storage scheme
!  (A)FORTRAN CALL: CALL Output(A,N,Label)
!     1.A: <R4> profile of matrix [A], dimension(*)
!     2.N: <I4> order of matrix [A]
!     3.Label: <I4> address reference labels, dimension(N)
!
!  dummy arguments
!
        INTEGER*4 N,Label(1)
        REAL*4 A(1,1)
!
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!  local variables
!
        INTEGER*4 Column,Row,I4TEMP
!
!  output the coefficients on non-zero fill-ins
!
        WRITE(*,'('' Row  Column  Coefficient'')')
        DO I4TEMP=1,N
               Column=Label(I4TEMP)
               DO Row=I4TEMP,N
                      WRITE(*,'(I4,I6,F9.3)') Row, I4TEMP, A(Row,Column)
              END DO
        END DO
!
        RETURN
        END
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Chapter 8.    Constant-Bandwidth and Asymmetric Systems

8.1  Purpose

This chapter has subroutines for the solution of [A]{X}={B} where the left side matrix [A] 
is of constant bandwidth and asymmetric. There is no consideration of definiteness of matrix [A]. 
The non-zero fill-ins of matrix [A] have a shape, for example, as:

where the symbol "+" indicates non-zero fill-ins in the upper triangular part, and the symbol "=" 
indicates non-zero fill-ins on the diagonal, and the symbol "*" indicates non-zero fill-ins in the 
lower  triangular  part.  Matrix  [A]  has  an  upper  bandwidth  and  a  lower  bandwidth.  In  this 
example, the upper bandwidth is 2 and the lower bandwidth is 3.

Three  types  of  subroutine  are  introduced  in  this  chapter,  which  perform the  following 
functions:

1. Decompose matrix [A] into the product of [L][U] where matrix [L] is the lower triangular 
matrix and matrix [U] is the upper triangular matrix.

2. Perform forward and backward substitutions.
3. Solve [A]{X}={B} in a single call.

Decomposition and substitution must be called in order, and work together as a pair. No 
pivoting is applied to the subroutines, which are as follows:

Decompose_CAG_4
Decompose_CAG_8
Decompose_CAG_10
Decompose_CAG_16
Decompose_CAG_Z4
Decompose_CAG_Z8
Decompose_CAG_Z10
Decompose_CAG_Z16

Substitute_CAG_4
Substitute_CAG_8
Substitute_CAG_10
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Substitute_CAG_16
Substitute_CAG_Z4
Substitute_CAG_Z8
Substitute_CAG_Z10
Substitute_CAG_Z16

Solution_CAG_4
Solution_CAG_8
Solution_CAG_10
Solution_CAG_16
Solution_CAG_Z4
Solution_CAG_Z8
Solution_CAG_Z10
Solution_CAG_Z16

meSolution_CAG_4
meSolution_CAG_8
meSolution_CAG_10
meSolution_CAG_16
meSolution_CAG_Z4
meSolution_CAG_Z8
meSolution_CAG_Z10
meSolution_CAG_Z16

The  subroutines  with  a  prefix  "me",  i.e.,  meSolution_CAG_4,  are  multiple-entry  direct 
solvers  that  are  most  well  suitable  for  systems  with  a  small  bandwidth.  For  more  detailed 
discussions on multiple-entry direct solvers, please see section 1.7.

8.2  Fortran Syntax for Subroutine Decompose

The following subroutines decompose matrix [A] into [A]=[L][U]. Syntax is as follows:

Decompose_CAG_4(A_io, N_i, UpperBandwidth_i, LowerBandwidth_i, NoGood_o)
Decompose_CAG_8(A_io, N_i, UpperBandwidth_i, LowerBandwidth_i, NoGood_o)
Decompose_CAG_10(A_io, N_i, UpperBandwidth_i, LowerBandwidth_i, NoGood_o)
Decompose_CAG_16(A_io, N_i, UpperBandwidth_i, LowerBandwidth_i, NoGood_o)
Decompose_CAG_Z4(A_io, N_i, UpperBandwidth_i, LowerBandwidth_i, NoGood_o)
Decompose_CAG_Z8(A_io, N_i, UpperBandwidth_i, LowerBandwidth_i, NoGood_o)
Decompose_CAG_Z10(A_io, N_i, UpperBandwidth_i, LowerBandwidth_i, NoGood_o)
Decompose_CAG_Z16(A_io, N_i, UpperBandwidth_i, LowerBandwidth_i, NoGood_o)

where

1. The argument A_io, array whose kind must be consistent with subroutine name convention, is 
the profile of matrix [A] that inputs the original matrix and returns the result if the variable 
NoGood_o is false. For the definition of profile, please see section 8.6.

2. The argument N_i, an INTEGER(4) variable, is the order of matrix [A].
3. The argument UpperBandwidth_i, an INTEGER(4) variable, is the upper bandwidth of matrix 

[A]. The upper bandwidth is the maximal number of non-zero fill-ins on the right side of 
diagonal in a row.
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4. The argument LowerBandwidth_i, an INTEGER(4) variable, is the lower bandwidth of matrix 
[A]. The lower bandwidth is the maximal number of non-zero fill-ins below the diagonal in a 
column.

5. The argument NoGood_o, a LOGICAL(4) variable, is a flag that indicates if the input matrix 
[A]  is  suitable  for  decomposition.  If  NoGood_o=.True.,  the  input  matrix  [A]  cannot  be 
decomposed  and  there  is  no  output  returned;  otherwise  the  profile  A_io  returns  the 
decomposed  matrices  [L]  and  [U].  For  the  situation  where  NoGood_o=.True.,  please  see 
section 8.8.

8.3  Fortran Syntax for Subroutine Substitute

The  following  subroutines  perform  forward  and  backward  substitutions.  Syntax  is  as 
follows:

Substitute_CAG_4(A_i, N_i, UpperBandwidth_i, LowerBandwidth_i, X_io)
Substitute_CAG_8(A_i, N_i, UpperBandwidth_i, LowerBandwidth_i, X_io)
Substitute_CAG_10(A_i, N_i, UpperBandwidth_i, LowerBandwidth_i, X_io)
Substitute_CAG_16(A_i, N_i, UpperBandwidth_i, LowerBandwidth_i, X_io)
Substitute_CAG_Z4(A_i, N_i, UpperBandwidth_i, LowerBandwidth_i, X_io)
Substitute_CAG_Z8(A_i, N_i, UpperBandwidth_i, LowerBandwidth_i, X_io)
Substitute_CAG_Z10(A_i, N_i, UpperBandwidth_i, LowerBandwidth_i, X_io)
Substitute_CAG_Z16(A_i, N_i, UpperBandwidth_i, LowerBandwidth_i, X_io)

where

1. The argument A_i, array whose kind must be consistent with subroutine name convention, is 
the profile of matrix [A] that inputs the result from decomposition.

2. The argument N_i, an INTEGER(4) variable, is the order of matrix [A].
3. The argument UpperBandwidth_i, an INTEGER(4) variable, is the upper bandwidth of matrix 

[A]. The upper bandwidth is the maximal number of non-zero fill-ins on the right side of 
diagonal in a row.

4. The argument LowerBandwidth_i, an INTEGER(4) variable, is the lower bandwidth of matrix 
[A]. The lower bandwidth is the maximal number of non-zero fill-ins below the diagonal in a 
column.

5. The argument X_io, array whose kind must be consistent with subroutine name convention, 
inputs the right side vector, and returns the solution.

8.4  Fortran Syntax for Subroutine Solution

The following subroutines decompose matrix [A] into the product of [L][U], and perform 
forward  and  backward  substitutions.  Solve  [A]{X}={B}  in  a  single  call.  The  syntax  is  as 
follows:

Solution_CAG_4(A_io,N_i,UpperBandwidth_i,LowerBandwidth_i,X_io,NoGood_o)
Solution_CAG_8(A_io,N_i,UpperBandwidth_i,LowerBandwidth_i,X_io,NoGood_o)
Solution_CAG_10(A_io,N_i,UpperBandwidth_i,LowerBandwidth_i,X_io,NoGood_o)
Solution_CAG_16(A_io,N_i,UpperBandwidth_i,LowerBandwidth_i,X_io,NoGood_o)
Solution_CAG_Z4(A_io,N_i,UpperBandwidth_i,LowerBandwidth_i,X_io,NoGood_o)
Solution_CAG_Z8(A_io,N_i,UpperBandwidth_i,LowerBandwidth_i,X_io,NoGood_o)
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Solution_CAG_Z10(A_io,N_i,UpperBandwidth_i,LowerBandwidth_i,X_io,NoGood_o)
Solution_CAG_Z16(A_io,N_i,UpperBandwidth_i,LowerBandwidth_i,X_io,NoGood_o)

where

1. The argument A_io, array whose kind must be consistent with subroutine name convention, is 
the profile of matrix [A], that inputs the original matrix and returns the decomposed result if 
the variable NoGood_o is false. For the definition of profile, please see section 8.6.

2. The argument N_i, an INTEGER(4) variable, is the order of matrix [A].
3. The argument UpperBandwidth_i, an INTEGER(4) variable, is the upper bandwidth of matrix 

[A]. The upper bandwidth is the maximal number of non-zero fill-ins on the right side of 
diagonal in a row.

4. The argument LowerBandwidth_i, an INTEGER(4) variable, is the lower bandwidth of matrix 
[A]. The lower bandwidth is the maximal number of non-zero fill-ins below the diagonal in a 
column.

5. The argument X_io, array whose kind must be consistent with subroutine name convention, 
inputs the right side vector, and returns the solution if NoGood_o is false.

6. The argument NoGood_o, a LOGICAL(4) variable, is a flag that indicates if the input system 
is suitable for the subroutine. If NoGood_o=.True., the input system cannot be solved by the 
subroutine and there is no output returned; otherwise the profile A_io returns the decomposed 
matrices  [L]  and  [U],  and  vector  X_io  returns  the  solution.  For  the  situation  where 
NoGood_o=.True., please see section 8.8.

8.5  Fortran Syntax for Subroutine meSolution

The following subroutines solve [A][X]=[B] by a multiple entry procedure, where [X] and 
[B] may be a matrix with multiple vectors, i.e., [X]=[{ X 1 } { X 2 } ...] and [B]=[{ B1 } { B2 } 
...]. This subroutine is more efficient if the upper and lower bandwidths are small. The syntax is 
as follows:

meSolution_CAG_4(A_io, N_i, UpperBandwidth_i, LowerBandwidth_i,   &
X_io, Nset_i, WorkingSpace_x, NoGood_o)

meSolution_CAG_8(A_io, N_i, UpperBandwidth_i, LowerBandwidth_i,    &
X_io, Nset_i, WorkingSpace_x, NoGood_o)

meSolution_CAG_10(A_io, N_i, UpperBandwidth_i, LowerBandwidth_i,    &
X_io, Nset_i, WorkingSpace_x, NoGood_o)

meSolution_CAG_16(A_io, N_i, UpperBandwidth_i, LowerBandwidth_i,    &
  X_io, Nset_i, WorkingSpace_x, NoGood_o)

meSolution_CAG_Z4(A_io, N_i, UpperBandwidth_i, LowerBandwidth_i,    &
  X_io, Nset_i, WorkingSpace_x, NoGood_o)

meSolution_CAG_Z8(A_io, N_i, UpperBandwidth_i, LowerBandwidth_i,    &
  X_io, Nset_i, WorkingSpace_x, NoGood_o)

meSolution_CAG_Z10(A_io, N_i, UpperBandwidth_i, LowerBandwidth_i,    &
 X_io, Nset_i, WorkingSpace_x, NoGood_o)

meSolution_CAG_Z16(A_io, N_i, UpperBandwidth_i, LowerBandwidth_i,    &
    X_io,Nset_i, WorkingSpace_x, NoGood_o)

where
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1. The argument A_io, array whose kind must be consistent with subroutine name convention, is 
the profile of matrix [A] that inputs the original matrix. After returning from this subroutine, 
the content in array A_io is destroyed. For the definition of profile, please see section 8.6.

2. The argument N_i, an INTEGER(4) variable, is the order of matrix [A].
3. The argument UpperBandwidth_i, an INTEGER(4) variable, is the upper bandwidth of matrix 

[A]. The upper bandwidth is the maximal number of non-zero fill-ins on the right side of the 
diagonal.

4. The argument LowerBandwidth_i, an INTEGER(4) variable, is the lower bandwidth of matrix 
[A]. The lower bandwidth is the maximal number of non-zero fill-ins below the diagonal.

5. The argument X_io, array whose kind must be consistent with subroutine name convention, 
inputs the right side vector(s), and returns the solution if NoGood_O is false.

6. The argument Nset_i, an INTEGER(4) variable, is the number of right side vectors.
7. The argument WorkingSpace_x, array whose kind must be consistent with subroutine name 

convention  and  providing  a  space  of  (N_i*(UpperBandwidth_i+LowerBandwidth_i)) 
elements, is a working space.

8. The argument NoGood_o, a LOGICAL(4) variable, is a flag that indicates if the input matrix 
[A] is suitable for the subroutine. If NoGood_o=.True., the input system cannot be solved and 
there is  no output;  otherwise the vector X_io returns the solution.  For the situation where 
NoGood_o=.True., please see section 8.8.

8.6  Profile

Profile for a constant bandwidth and asymmetric matrix is as:

where the symbol * represents non-zero fill-ins and the symbol & indicates an extra memory 
space whose content is never used. Total length of profile is determined as

profile size = N * (UpperBandwidth + LowerBandwidth + 1) –LowerBandwidth (8.2)

where N is the matrix order, and LowerBandwidth is the lower bandwidth, and UpperBandwidth 
is the upper bandwidth.

8.7  Data Storage Scheme
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Data storage scheme for a constant bandwidth and asymmetric matrix must be declared in a 
Fortran program, for example:

        INTEGER (4) :: UpperBandwidth,LowerBandwidth
        REAL (4) :: A(1-UpperBandwidth:LowerBandwidth,1)

where variable A, in this example, is a single precision profile for matrix [A]. For other kinds of 
variable,  profile  must  be  properly  declared.  Then,  the  coefficient  Aij  of  matrix  [A]  is 

programmed in a Fortran program as A(I,J), no matter  Aij  is in the upper triangular part or in 
the lower triangular part.

The non-zero fill-ins in the i-th column are from the beginning index as:

Maximum of ( 1, i - UpperBandwidth) (8.3)

to the ending index as:

Minimum of ( N, i + LowerBandwidth) (8.4)

where N is the order of matrix [A].

8. 8  Failure of Calling Request

If a  calling request  fails,  solving procedure meets a diagonal  coefficient  whose absolute 
value is very small and is negligible compared to unity.

Since the subroutines introduced in this chapter do not consider pivoting, failure of request 
does  not  mean  that  the  matrix  is  absolutely  singular.  A  pivoting  may  continue  execution. 
However, pivoting may take more time. If a pivoting is necessary, try a corresponding solver 
with partial pivoting.

8.9  Fortran Example

For a given system [A]{X}={B}, the left side matrix [A] and the right side vector {B} are 
defined as follows:
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in  which  the  order  N=7,  and  the  lower  bandwidth  LowerBandwidth=2,  and  the 
UpperBandwidth=1.  A  Fortran  program  for  decomposition  and  substitution  is  as  follows. 
Subroutines “Input” and “Output” have data storage scheme. Subroutine “Decompose_CAG_4” 
decomposes matrix [A], and subroutine “Substitute_CAG_4” performs forward and backward 
substitutions.

!  *** Example program ***
!  define variables where the length of A is determined by equation (8.2)
!
        PARAMETER (N=7)
        INTEGER*4  UpperBandwidth
        PARAMETER (UpperBandwidth=1)
        PARAMETER (LowerBandwidth=2)
        REAL*4 A(N*(UpperBandwidth+LowerBandwidth+1)- LowerBandwidth)
        REAL*4 X(N)
        LOGICAL*4 NoGood
        DATA X/21.0,11.0,122.0,19.0,333.0,1.0,3.0/
!
!  input the non-zero fill-ins of matrix [A]
!
        CALL Input(A,UpperBandwidth,LowerBandwidth)
!
!  decompose in parallel
!
        CALL Decompose_CAG_4(A,N,UpperBandwidth, LowerBandwidth, NoGood)
!
!  stop if NoGood=.True.
!
        IF(NoGood) STOP 'Cannot be decomposed'
!
!  perform substitutions in parallel
!
        CALL Substitute_CAG_4(A,N,UpperBandwidth, LowerBandwidth,X)
!
!  output decomposed matrix
!
        CALL Output(A,N,UpperBandwidth,LowerBandwidth)
!
!  output the solution
!
        Write(*,'('' Solution is as:'')')
        Write(*,*) X
!
!  laipe done
!
        call laipeDone
!
        STOP
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        END
        SUBROUTINE Input(A,UpperBandwidth,LowerBandwidth)
!
!
!  routine to demonstrate an application of data storage scheme
!  (A)FORTRAN CALL: CALL Input(A,UpperBandwidth,LowerBandwidth)
!     1.A: <R4> profile of matrix [A], dimension(*)
!     2.UpperBandwidth: <I4> upper bandwidth
!     3.LowerBandwidth: <I4> lower bandwidth
!
!  dummy arguments
!
        INTEGER*4 UpperBandwidth,LowerBandwidth
        REAL*4 A(1-UpperBandwidth:LowerBandwidth,1)
!
!  input
!
        A(1,1)= 1.0
        A(2,1)= 4.0
        A(3,1)= 2.0
        A(1,2)= 2.0
        A(2,2)=25.0
        A(3,2)=29.0
        A(4,2)=99.0
        A(2,3)= 4.0
        A(3,3)=14.0
        A(4,3)=34.0
        A(5,3)= 3.0
        A(3,4)= 9.0
        A(4,4)=19.0
        A(5,4)=23.0
        A(6,4)=11.0
        A(4,5)=71.0
        A(5,5)= 5.0
        A(6,5)= 7.0
        A(7,5)= 3.0
        A(5,6)=93.0
        A(6,6)=22.0
        A(7,6)= 2.0
        A(6,7)= 4.0
        A(7,7)= 9.0
!
        RETURN
        END

        SUBROUTINE Output(A,N,UpperBandwidth, LowerBandwidth)
!
!
!  routine to output the decomposed matrix by data storage scheme
!  (A)FORTRAN CALL: CALL Output(A,N,UpperBandwidth,LowerBandwidth)
!     1.A: <R4> profile of matrix [A], dimension(*)
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!     2.N: <I4> order of matrix [A]
!     3.UpperBandwidth: <I4> upper bandwidth
!     4.LowerBandwidth: <I4> lower bandwidth
!
!  dummy arguments
!
        INTEGER*4 N,UpperBandwidth,LowerBandwidth
        REAL*4 A(1-UpperBandwidth:LowerBandwidth,1)
!
!  local variables
!
        INTEGER*4 Column,Row
!
!  output the coefficients on non-zero fill-ins. The beginning and ending row indices for each
!  column are defined in equation (8.3) and equation (8.4)
!
        WRITE(*,'('' Row  Column  Coefficient'')')
        DO Column=1,N
               DO Row=MAX0(1,Column-UpperBandwidth), MIN0(N,Column+LowerBandwidth)
                     WRITE(*,'(I4,I6,F9.3)') Row, Column, A(Row,Column)
               END DO
        END DO
!
        RETURN
        END
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Chapter 9.    Variable-Bandwidth and Asymmetric Systems

9.1  Purpose

This chapter has subroutines for the solution of [A]{X}={B} where the left side matrix [A] 
is of variable bandwidth and asymmetric. There is no consideration of definiteness of matrix [A]. 
The non-zero fill-ins in the left side matrix [A] have a shape, for example, as:

Three  types  of  subroutine  are  introduced  in  the  chapter,  which  perform  the  following 
functions:

1. Decompose matrix [A] into the product of [L][U] where matrix [L] is the lower triangular 
matrix and matrix [U] is the upper triangular matrix.

2. Perform forward and backward substitutions.
3. Solve [A]{X}={B} in a single call.

Decomposition and substitution must be called in order, and work together as a pair. No 
pivoting is applied to the subroutines, which are as:

Decompose_VAG_4
Decompose_VAG_8
Decompose_VAG_10
Decompose_VAG_16
Decompose_VAG_Z4
Decompose_VAG_Z8
Decompose_VAG_Z10
Decompose_VAG_Z16

Substitute_VAG_4
Substitute_VAG_8
Substitute_VAG_10
Substitute_VAG_16
Substitute_VAG_Z4
Substitute_VAG_Z8
Substitute_VAG_Z10
Substitute_VAG_Z16
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Solution_VAG_4
Solution_VAG_8
Solution_VAG_10
Solution_VAG_16
Solution_VAG_Z4
Solution_VAG_Z8
Solution_VAG_Z10
Solution_VAG_Z16

9.2  Fortran Syntax for Subroutine Decompose

The following subroutines decompose matrix [A] into [A]=[L][U]. Syntax is as follows:

Decompose_VAG_4(A_io, N_i, Label_i, Last_i, NoGood_o)
Decompose_VAG_8(A_io, N_i, Label_i, Last_i, NoGood_o)
Decompose_VAG_10(A_io, N_i, Label_i, Last_i, NoGood_o)
Decompose_VAG_16(A_io, N_i, Label_i, Last_i, NoGood_o)
Decompose_VAG_Z4(A_io, N_i, Label_i, Last_i, NoGood_o)
Decompose_VAG_Z8(A_io, N_i, Label_i, Last_i, NoGood_o)
Decompose_VAG_Z10(A_io, N_i, Label_i, Last_i, NoGood_o)
Decompose_VAG_Z16(A_io, N_i, Label_i, Last_i, NoGood_o)

where

1. The argument A_io, array whose kind must be consistent with subroutine name convention, is 
the profile of matrix [A] that inputs the original matrix and returns the result if the variable 
NoGood_o is false. For the definition of profile, please see section 9.5.

2. The argument N_i, an INTEGER(4) variable, is the order of matrix [A].
3. The  argument  Label_i,  an  INTEGER(4)  array,  is  the  address  reference  label.  For  the 

definition of address reference label, please see section 9.6.
4. The argument Last_i, an INTEGER(4) array, is the last entry to each column in the profile. 

For the definition of the last entry, please see section 9.6.
5. The argument NoGood_o, a LOGICAL(4) variable, is a flag that indicates if the input matrix 

[A]  is  suitable  for  decomposition.  If  NoGood_o=.True.,  the  input  matrix  [A]  cannot  be 
decomposed  and  there  is  no  output  returned;  otherwise  the  profile  A_io  returns  the 
decomposed  matrices  [L]  and  [U].  For  the  situation  where  NoGood_o=.True.,  please  see 
section 9.7.

9.3  Fortran Syntax for Subroutine Substitute

The  following  subroutines  perform  forward  and  backward  substitutions.  Syntax  is  as 
follows:

Substitute_VAG_4(A_i, N_i, Label_i, Last_i, X_io)
Substitute_VAG_8(A_i, N_i, Label_i, Last_i, X_io)
Substitute_VAG_10(A_i, N_i, Label_i, Last_i, X_io)
Substitute_VAG_16(A_i, N_i, Label_i, Last_i, X_io)
Substitute_VAG_Z4(A_i, N_i, Label_i, Last_i, X_io)
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Substitute_VAG_Z8(A_i, N_i, Label_i, Last_i, X_io)
Substitute_VAG_Z10(A_i, N_i, Label_i, Last_i, X_io)
Substitute_VAG_Z16(A_i, N_i, Label_i, Last_i, X_io)

where

1. The argument A_i, array whose kind must be consistent with subroutine name convention, is 
the profile of matrix [A] that inputs the result from decomposition.

2. The argument N_i, an INTEGER(4) variable, is the order of matrix [A].
3. The  argument  Label_i,  an  INTEGER(4)  array,  is  the  address  reference  label.  For  the 

definition of address reference label, please see section 9.6.
4. The  argument  Last_i,  an  INTEGER(4)  array,  is  the  last  entry  of  each  column.  For  the 

definition of the last entry, please see section 9.6.
5. The argument X_io, array whose kind must be consistent with subroutine name convention, 

inputs the right side vector, and returns the solution.

9.4  Fortran Syntax for Subroutine  Solution

The following subroutines first decompose matrix [A] into the product of [L][U], and then 
perform forward  and backward substitutions.  Solve the  system [A]{X}={B} in a  single  call. 
Syntax is as follows:

Solution_VAG_4(A_io, N_i, Label_i, Last_i, X_io, NoGood_o)
Solution_VAG_8(A_io, N_i, Label_i, Last_i, X_io, NoGood_o)
Solution_VAG_10(A_io, N_i, Label_i, Last_i, X_io, NoGood_o)
Solution_VAG_16(A_io, N_i, Label_i, Last_i, X_io, NoGood_o)
Solution_VAG_Z4(A_io, N_i, Label_i, Last_i, X_io, NoGood_o)
Solution_VAG_Z8(A_io, N_i, Label_i, Last_i, X_io, NoGood_o)
Solution_VAG_Z10(A_io, N_i, Label_i, Last_i, X_io, NoGood_o)
Solution_VAG_Z16(A_io, N_i, Label_i, Last_i, X_io, NoGood_o)

where

1. The argument A_io, array whose kind must be consistent with subroutine name convention, is 
the profile of matrix [A], that inputs the original matrix and returns the decomposed result if 
the variable NoGood_o is false. For the definition of profile, please see section 9.5.

2. The argument N_i, an INTEGER(4) variable, is the order of matrix [A].
3. The  argument  Label_i,  an  INTEGER(4)  array,  is  the  address  reference  label.  For  the 

definition of address reference label, please see section 9.6.
4. The argument Last_i, an INTEGER(4) array, is the last entry of column. For the definition of 

the last entry, please see section 9.6.
5. The argument X_io, array whose kind must be consistent with subroutine name convention, 

inputs the right side vector, and returns the solution if NoGood_o is false.
6. The argument NoGood_o, a LOGICAL(4) variable, is a flag that indicates if the input system 

is suitable for the subroutine. If NoGood_o=.True., the input system cannot be solved and 
there is no output returned; otherwise the profile A_io returns the decomposed matrices [L] 
and [U],  and vector  X_io returns  the  solution.  For the  situation  where  NoGood_o=.True., 
please see section 9.7.
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9.5  Profile

Profile for variable bandwidth and asymmetric matrix is more complex than the other ones 
discussed  in  the  previous  chapters,  and  requires  some  extra  memory  spaces  in  the  lower 
triangular part. The profile for the upper triangular part simply hinges on the non-zero fill-ins. 
Before  discussing  profile  for  the  lower  triangular  part  of  matrix  [A],  let  us  examine  two 
variables, Beginning(I) and Ending(I).  Beginning(I) is the row index of the first non-zero fill-in 
in the i-th column and Ending(I) is the row index of the last non-zero fill-in in the i-th column. 
Then, the last entry, denoted by Last, is defined as:

1 Set Last(1) = Ending(1)
2. For I = 2 to N, do the following

Last(I) = Maximum of (Last(I-1),Ending(I)) (9.1)

The  Beginning and  Last indices  define  the  profile  of  an asymmetric  and variable  bandwidth 
matrix. The address reference label is then defined as:

1. Set Label(1) = 1
2. For I = 2 to N, do the following

Label(I) = Label(I-1) + Last(I-1) -Beginning(I) + 1 (9.2)

The required length of profile is written as:

profile size = Label(N)-1+ N (9.3)

where N is the matrix order, and Label(N) is the address reference label for the N-th column. For 
example, if a sparse matrix is written as follows.

where the symbol * represents a non-zero fill-in. Then, the beginning indices are 1, 1, 2, 3, 2, 5, 
and 4, and the ending indices are 3, 4, 7, 6, 6, 7, and 7. Then, the last entries determined by 
equation (9.1) are 3, 4, 7, 7, 7, 7, and 7. The beginning and last indices define the profile which 
may be written as
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where the symbol = indicates an entry to the profile. The address reference labels are 1, 4, 7, 12, 
18, 21, and 25. Equation (9.3) computes that the profile size is 31, which may be checked from 
the form (9.5).

For a variable-bandwidth and asymmetric matrix, the profile size is usually greater than the 
number of non-zero fill-ins. Comparing form (9.4) with form (9.5) finds that the profile has two 
more elements, A(7,4) and A(7,5). It must initialize the extra memory space in the profile, i.e., 
A(7,4)=0 and A(7,5)=0, before calling any of the following  subroutines:

Decompose_VAG_4
Decompose_VAG_8
Decompose_VAG_10
Decompose_VAG_16
Decompose_VAG_Z4
Decompose_VAG_Z8
Decompose_VAG_Z10
Decompose_VAG_Z16

Solution_VAG_4
Solution_VAG_8
Solution_VAG_10
Solution_VAG_16
Solution_VAG_Z4
Solution_VAG_Z8
Solution_VAG_Z10
Solution_VAG_Z16

9.6  Data Storage Scheme

Data storage scheme for a variable-bandwidth and asymmetric matrix must be declared in a 
Fortran program, for example:

                REAL (4) :: A(1,1)

where variable A, in this example, is a single precision profile for matrix [A]. For other kinds of 
variable, profile must be properly declared. Then, replace the column index, for example j, with 
the  address  reference  label,  for  example  Label(J).  The  coefficient  Aij of  matrix  [A]  is 
programmed in a Fortran program as A(I,Label(J)).

The previous section introduces  the  beginning and  ending indices,  the address reference 
label, and the last entry for a profile. In practical calling convention, only the address reference 
label and the last entry are required. The address reference label  and last entry then determine 
the beginning index. In the i-th column, from equation (9.2) the beginning index is determined as:

Label(I-1) + Last(I-1) - Label(I) + 1 (9.6)

9.7  Failure of Calling Request
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If a  calling request  fails,  solving procedure meets a diagonal  coefficient  whose absolute 
value is very small and is negligible compared to unity.

Since the subroutines introduced in this chapter do not consider pivoting, failure of request 
does not mean that the input matrix is absolutely singular. A pivoting may continue execution. 
However, a pivoting may destroy sparsity. If a pivoting is necessary, try a constant bandwidth 
solver with partial pivoting or a dense solver with pivoting.

9.8  Fortran Example

For a given system [A]{X}={B}, the left side matrix [A] and the right side vector {B} are 
defined as follows:

in which the order N=7. A Fortran program for decomposition and substitution is as follows. 
Subroutines “Input” and “Output” have data storage scheme. Subroutine “Decompose_VAG_4” 
decomposes matrix [A], and subroutine “Substitute_VAG_4” performs forward and backward 
substitutions.

!  *** Example program ***
!  define variables where the length of A  is determined by equation (9.3),
!  Equation (9.1), and the address reference define the last entry
!  label is defined by equation(9.2)
!
        PARAMETER (N=7)
        REAL*4 A(31),X(N)
        INTEGER*4 Label(N),Last(N)
        LOGICAL*4 NoGood
        DATA X/5.0,41.0,12.0,9.0,303.0,21.0,23.0/
        DATA Label/1,4,7,12,18,21,25/
        DATA Last/3,4,7,7,7,7,7/
!
!  input matrix [A]
!
        CALL Input(A,Label,Last,N)
!
!  decompose in parallel
!
        CALL Decompose_VAG_4(A,N,Label,Last,NoGood)
!
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!  stop if NoGood=.True.
!
        IF(NoGood) STOP 'Cannot be decomposed'
!
!  perform substitutions in parallel
!
        CALL Substitute_VAG_4(A,N,Label,Last,X)
!
!  output decomposed matrix
!
        CALL Output(A,N,Label,Last)
!
!  output the solution
!
        Write(*,'('' Solution is as:'')')
        Write(*,*) X
!
!  laipe done
!
        call laipeDone
!
        STOP
        END
        SUBROUTINE Input(A,Label,Last,N)
!
!
!  routine to demonstrate an application of data storage scheme
!  (A)FORTRAN CALL: CALL Input(A,Label,Last,N)
!     1.A: <R4> profile of matrix [A], dimension(*)
!     2.Label: <I4> address reference labels, dimension(*)
!     3.Last: <I4> the last entry to each column, dimension(*)
!     4.N: <I4> order of matrix [A]
!
!  dummy arguments
!
        INTEGER*4 Label(1),Last(1),N
        REAL*4 A(1,1)
!
!  local variable
!
        INTEGER*4 I4TEMP
!
!  initialization where the length of profile is determined by equation (9.3)
!
        DO I4TEMP=1,Label(N)-1+N
               A(I4TEMP,1)=0.0
        END DO
!
!  input
!
        A(1,Label(1))= 1.0
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        A(2,Label(1))= 5.0
        A(3,Label(1))= 9.0
        A(1,Label(2))= 4.0
        A(2,Label(2))=25.0
        A(3,Label(2))=13.0
        A(4,Label(2))= 4.0
        A(2,Label(3))=29.0
        A(3,Label(3))= 1.0
        A(4,Label(3))= 5.0
        A(5,Label(3))= 7.0
        A(6,Label(3))= 2.0
        A(7,Label(3))=11.0
        A(3,Label(4))=34.0
        A(4,Label(4))= 9.0
        A(5,Label(4))= 3.0
        A(6,Label(4))=22.0
        A(2,Label(5))=32.0
        A(3,Label(5))=17.0
        A(4,Label(5))=23.0
        A(5,Label(5))= 8.0
        A(6,Label(5))= 6.0
        A(5,Label(6))=37.0
        A(6,Label(6))= 2.0
        A(7,Label(6))= 1.0
        A(4,Label(7))= 9.0
        A(5,Label(7))= 3.0
        A(6,Label(7))= 2.0
        A(7,Label(7))= 1.0
!
        RETURN
        END
        SUBROUTINE Output(A,N,Label,Last)
!
!
!  routine to output the decomposed matrix by data storage scheme
!  (A)FORTRAN CALL: CALL Output(A,N,Label,Last)
!     1.A: <R4> profile of matrix [A], dimension(*)
!     2.N: <I4> order of matrix [A]
!     3.Label: <I4> address reference labels, dimension(*)
!     4.Last: <I4> the last entry to each column, dimension(*)
!
!  dummy arguments
!
        INTEGER*4 N,Label(1),Last(1)
        REAL*4 A(1,1)
!
!  local variables
!
        INTEGER*4 I4TEMP,Column,Row
!
!  output the coefficients on non-zero fill-ins where the beginning index is

69



!  computed by equation (9.6)
!
        WRITE(*,'('' Row  Column  Coefficient'')')
        DO I4TEMP=1,N
               Column=Label(I4TEMP)
               DO Row=Label(I4TEMP-1)+Last(I4TEMP-1)- Column+1, Last(I4TEMP)
                     WRITE(*,'(I4,I6,F9.3)') Row,I4TEMP, A(Row,Column)
               END DO
        END DO
!
        RETURN
        END
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Chapter 10.     Dense and Asymmetric Systems

10.1  Purpose

This chapter has subroutines for the solution of [A]{X}={B} where the left side matrix [A] 
is dense and asymmetric. There is no consideration of definiteness of matrix [A]. The non-zero 
fill-ins of matrix [A] have a simple shape, for example, as:

where the symbol * indicates non-zero fill-ins. Three types of subroutine are introduced in the 
chapter, which perform the following functions:

1. Decompose matrix [A] into the product of [L][U] where matrix [L] is the lower triangular 
matrix and matrix [U] is the upper triangular matrix.

2. Perform forward and backward substitutions.
3. Solve [A]{X}={B} in a single call.

Decomposition and substitution must be called in order, and work together as a pair. No 
pivoting is applied to the subroutines introduced in this chapter. The subroutines are as follows:

Decompose_DAG_4
Decompose_DAG_8
Decompose_DAG_10
Decompose_DAG_16
Decompose_DAG_Z4
Decompose_DAG_Z8
Decompose_DAG_Z10
Decompose_DAG_Z16

Substitute_DAG_4
Substitute_DAG_8
Substitute_DAG_10
Substitute_DAG_16
Substitute_DAG_Z4
Substitute_DAG_Z8
Substitute_DAG_Z10
Substitute_DAG_Z16
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Solution_DAG_4
Solution_DAG_8
Solution_DAG_10
Solution_DAG_16
Solution_DAG_Z4
Solution_DAG_Z8
Solution_DAG_Z10
Solution_DAG_Z16

10.2  Fortran Syntax for Subroutine Decompose

The following subroutines decompose matrix [A] into [A]=[L][U]. Syntax is as follows:

Decompose_DAG_4(A_io, N_i, NoGood_o)
Decompose_DAG_8(A_io, N_i, NoGood_o)
Decompose_DAG_10(A_io, N_i, NoGood_o)
Decompose_DAG_16(A_io, N_i, NoGood_o)
Decompose_DAG_Z4(A_io, N_i, NoGood_o)
Decompose_DAG_Z8(A_io, N_i, NoGood_o)
Decompose_DAG_Z10(A_io, N_i, NoGood_o)
Decompose_DAG_Z16(A_io, N_i, NoGood_o)

where

1. The argument A_io, array whose kind must be consistent with subroutine name convention, is 
the profile of matrix [A] that inputs the original matrix and returns the result if the variable 
NoGood_o is false. For the definition of profile, please see section 10.5.

2. The argument N_i, an INTEGER(4) variable, is the order of matrix [A].
3. The argument NoGood_o, a LOGICAL(4) variable, is a flag that indicates if the input matrix 

[A]  is  suitable  for  the  subroutine.  If  NoGood_o=.True.,  the  input  matrix  [A]  cannot  be 
decomposed  and  there  is  no  output  returned;  otherwise  the  profile  A_io  returns  the 
decomposed  matrices  [L]  and  [U].  For  the  situation  where  NoGood_o=.True.,  please  see 
section 10.7.

10.3  Fortran Syntax for Subroutine Substitute

The  following  subroutines  perform  forward  and  backward  substitutions.  Syntax  is  as 
follows:

Substitute_DAG_4(A_i, N_i, X_io)
Substitute_DAG_8(A_i, N_i, X_io)
Substitute_DAG_10(A_i, N_i, X_io)
Substitute_DAG_16(A_i, N_i, X_io)
Substitute_DAG_Z4(A_i, N_i, X_io)
Substitute_DAG_Z8(A_i, N_i, X_io)
Substitute_DAG_Z10(A_i, N_i, X_io)
Substitute_DAG_Z16(A_i, N_i, X_io)

where
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1. The argument A_i, array whose kind must be consistent with subroutine name convention, is 
the profile of matrix [A] that inputs the result from decomposition.

2. The argument N_i, an INTEGER(4) variable, is the order of matrix [A].
3. The argument X_io, array whose kind must be consistent with subroutine name convention, 

inputs the right side vector, and returns the solution.

10.4  Fortran Syntax for Subroutine Solution

The following subroutines first decompose matrix [A] into the product of [L][U], and then 
perform forward and backward substitutions. Solve [A]{X}={B} in a single call. The syntax is as 
follows:

Solution_DAG_4(A_io, N_i, X_io, NoGood_o)
Solution_DAG_8(A_io, N_i, X_io, NoGood_o)
Solution_DAG_10(A_io, N_i, X_io, NoGood_o)
Solution_DAG_16(A_io, N_i, X_io, NoGood_o)
Solution_DAG_Z4(A_io, N_i, X_io, NoGood_o)
Solution_DAG_Z8(A_io, N_i, X_io, NoGood_o)
Solution_DAG_Z10(A_io, N_i, X_io, NoGood_o)
Solution_DAG_Z16(A_io, N_i, X_io, NoGood_o)

where

1. The argument A_io, array whose kind must be consistent with subroutine name convention, is 
the profile of matrix [A], that inputs the original matrix and returns the decomposed result if 
the variable NoGood_o is false. For the definition of profile, please see section 10.5.

2. The argument N_i, an INTEGER(4) variable, is the order of matrix [A].
3. The argument X_io, array whose kind must be consistent with subroutine name convention, 

inputs the right side vector, and returns the solution if NoGood_o is false.
4. The argument NoGood_o, a LOGICAL(4) variable, is a flag that indicates if the input system 

is suitable for the subroutine. If NoGood_o=.True., the input system cannot be solved by the 
subroutine and there is no output returned; otherwise the profile A_io returns the decomposed 
matrices  [L]  and  [U],  and  vector  X_io  returns  the  solution.  For  the  situation  where 
NoGood_o=.True., please see section 10.7.

10.5  Profile

Profile for a dense and asymmetric matrix is the simplest as:
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where the symbol · represents non-zero fill-ins. Total length of profile is determined as

profile size = N * N (10.2)

where N is the matrix order.

10.6  Data Storage Scheme

Data  storage scheme for  a  dense  and asymmetric  matrix  must  be  declared  in  a  Fortran 
program, for example:

                REAL (4) :: A(N,N)

where variable A here is a single precision profile for matrix [A], and N is the matrix order. For 
other kinds of variable, profile must be properly declared. Then, the coefficient  Aij of matrix 
[A] is simply programmed in a Fortran program as A(I,J).

10.7  Failure of Calling Request

If a  calling request  fails,  solving procedure meets a diagonal  coefficient  whose absolute 
value is very small and is negligible compared to unity.

Since the subroutines introduced in this chapter do not consider pivoting, failure of request 
does not mean that the input matrix is absolutely singular. A pivoting may continue execution. 
However, pivoting always takes more time. If a pivoting is necessary, try a dense solver with 
partial or full pivoting.

10.8  Fortran Example

For a given system [A]{X}={B}, the left side matrix [A] and the right side vector {B} are 
defined as follows:

in which the order N=7. A Fortran program for decomposition and substitution is as follows. 
Subroutines “Input” and “Output” have data storage scheme. Subroutine “Decompose_DAG_4” 
decomposes matrix [A], and subroutine “Substitute_DAG_4” performs forward and backward 
substitutions.
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!  *** Example program ***
!  define variables where the length of A is determined by equation (10.2)
!
        PARAMETER (N=7)
        REAL*4 A(N,N),X(N)
        LOGICAL*4 NoGood
        DATA X/21.0,141.0,2.0,9.0,333.0,1.0,3.0/
!
!  input matrix [A]
!
        CALL Input(A,N)
!
!  decompose in parallel
!
        CALL Decompose_DAG_4(A,N,NoGood)
!
!  stop if NoGood=.True.
!
        IF(NoGood) STOP 'Cannot be decomposed'
!
!  perform substitutions in parallel
!
        CALL Substitute_DAG_4(A,N,X)
!
!  output decomposed matrix
!
        CALL Output(A,N)
!
!  output the solution
!
        Write(*,'('' Solution is as:'')')
        Write(*,*) X
!
!  laipe done
!
        call laipeDone
!
        STOP
        END
        SUBROUTINE Input(A,N)
!
!
!  routine to demonstrate an application of data storage scheme
!  (A)FORTRAN CALL: CALL Input(A,N)
!     1.A: <R4> profile of matrix [A], dimension(N,N)
!     2.N: <I4> the order of matrix [A]
!
!  dummy arguments
!
        INTEGER*4 N
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        REAL*4 A(N,N)
!
!  first column
!
        A(1,1)= 1.0
        A(2,1)= 4.0
        A(3,1)= 2.0
        A(4,1)= 3.0
        A(5,1)=12.0
        A(6,1)= 4.0
        A(7,1)= 2.0
!
!  second column
!
        A(1,2)= 2.0
        A(2,2)= 5.0
        A(3,2)=29.0
        A(4,2)= 9.0
        A(5,2)=23.0
        A(6,2)= 2.0
        A(7,2)=27.0
!
!  third column
!
        A(1,3)=13.0
        A(2,3)= 3.0
        A(3,3)= 4.0
        A(4,3)=34.0
        A(5,3)= 3.0
        A(6,3)=22.0
        A(7,3)= 3.0
!
!  fourth column
!
        A(1,4)=17.0
        A(2,4)= 5.0
        A(3,4)= 7.0
        A(4,4)= 8.0
        A(5,4)=23.0
        A(6,4)=11.0
        A(7,4)=49.0
!
!  fifth column
!
        A(1,5)=32.0
        A(2,5)= 0.0
        A(3,5)=11.0
        A(4,5)=33.0
        A(5,5)=45.0
        A(6,5)= 7.0
        A(7,5)=33.0
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!
!  sixth column
!
        A(1,6)=47.0
        A(2,6)= 0.0
        A(3,6)= 5.0
        A(4,6)=14.0
        A(5,6)=-1.0
        A(6,6)= 2.0
        A(7,6)=12.0
!
!  seventh column
!
        A(1,7)= 6.0
        A(2,7)= 6.0
        A(3,7)= 4.0
        A(4,7)= 3.0
        A(5,7)= 2.0
        A(6,7)= 1.0
        A(7,7)= 9.0
!
        RETURN
        END
        SUBROUTINE Output(A,N)
!
!
!  routine to output the decomposed matrix by data storage scheme
!  (A)FORTRAN CALL: CALL Output(A,N)
!     1.A: <R4> profile of matrix [A], dimension(*)
!     2.N: <I4> order of matrix [A]
!
!  dummy arguments
!
        INTEGER*4 N
        REAL*4 A(N,N)
!
!  local variables
!
        INTEGER*4 Column,Row
!
!  output the coefficients on non-zero fill-ins
!
        WRITE(*,'('' Row  Column  Coefficient'')')
        DO Column=1,N
               DO Row=1,N
                     WRITE(*,'(I4,I6,F9.3)') Row,Column, A(Row,Column)
              END DO
        END DO
!
        RETURN
        END
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Chapter 11. Constant-Bandwidth and Asymmetric Solvers
with Partial Pivoting

11.1  Purpose

This chapter has subroutines for the solution of [A]{X}={B} with partial pivoting where the 
left side matrix [A] has a constant bandwidth and is asymmetric. There is no consideration of 
definiteness of matrix [A]. The non-zero fill-ins of matrix [A] have a shape, for example, as:

where the symbol "+" indicates non-zero fill-ins in the upper triangular part, and the symbol "=" 
indicates non-zero fill-ins on the diagonal, and the symbol "*" indicates non-zero fill-ins in the 
lower triangular part. Matrix [A] has an upper bandwidth and a lower bandwidth. In the above 
example, the upper bandwidth is two and the lower bandwidth is three.

Three  types  of  subroutine  are  introduced  in  this  chapter,  which  perform the  following 
functions:

1. Decompose matrix [A] into the product of [L][U] where matrix [L] is the lower triangular 
matrix and matrix [U] is the upper triangular matrix.

2. Perform forward and backward substitutions.
3. Solve [A]{X}={B} in a single call.

Decomposition and substitution must be called in order, and work together as a pair. The 
subroutines are as:

ppDecompose_CAG_4
ppDecompose_CAG_8
ppDecompose_CAG_10
ppDecompose_CAG_16
ppDecompose_CAG_Z4
ppDecompose_CAG_Z8
ppDecompose_CAG_Z10
ppDecompose_CAG_Z16

ppSubstitute_CAG_4
ppSubstitute_CAG_8
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ppSubstitute_CAG_10
ppSubstitute_CAG_16
ppSubstitute_CAG_Z4
ppSubstitute_CAG_Z8
ppSubstitute_CAG_Z10
ppSubstitute_CAG_Z16

ppSolution_CAG_4
ppSolution_CAG_8
ppSolution_CAG_10
ppSolution_CAG_16
ppSolution_CAG_Z4
ppSolution_CAG_Z8
ppSolution_CAG_Z10
ppSolution_CAG_Z16

11.2  Fortran Syntax for Subroutine ppDecompose

The following subroutines  decompose matrix  [A]  into [A]=[L][U]  with  partial  pivoting. 
Syntax is as follows:

ppDecompose_CAG_4(A_io, N_i, UpperBandwidth_i, LowerBandwidth_i,    &
From_o, First_o, NoGood_o)

ppDecompose_CAG_8(A_io, N_i, UpperBandwidth_i, LowerBandwidth_i,    &
From_o, First_o, NoGood_o)

ppDecompose_CAG_10(A_io, N_i, UpperBandwidth_i, LowerBandwidth_i,    &
  From_o, First_o, NoGood_o)

ppDecompose_CAG_16(A_io, N_i, UpperBandwidth_i, LowerBandwidth_i,    &
  From_o, First_o, NoGood_o)

ppDecompose_CAG_Z4(A_io, N_i, UpperBandwidth_i, LowerBandwidth_i,    &
  From_o, First_o, NoGood_o)

ppDecompose_CAG_Z8(A_io, N_i, UpperBandwidth_i, LowerBandwidth_i,    &
  From_o, First_o, NoGood_o)

ppDecompose_CAG_Z10(A_io, N_i, UpperBandwidth_i, LowerBandwidth_i,    &
From_o, First_o, NoGood_o)

ppDecompose_CAG_Z16(A_io, N_i, UpperBandwidth_i, LowerBandwidth_i,    &
From_o, First_o, NoGood_o)

where

1. The argument A_io, array whose kind must be consistent with subroutine name convention, is 
the profile of matrix [A] that inputs the original matrix and returns the result if the variable 
NoGood_o is false. For the definition of profile, please see section 11.5.

2. The argument N_i, an INTEGER(4) variable, is the order of matrix [A].
3. The argument UpperBandwidth_i, an INTEGER(4) variable, is the upper bandwidth of matrix 

[A]. The upper bandwidth is the maximal number of non-zero fill-ins on the right side of 
diagonal in a row.

4. The argument LowerBandwidth_i, an INTEGER(4) variable, is the lower bandwidth of matrix 
[A]. The lower bandwidth is the maximal number of non-zero fill-ins below the diagonal in a 
column.

79



5. The argument From_o, an INTEGER(4) array having N_i elements,  returns the row index 
where the remaining elements in a row are from if NoGood_o is false.

6. The argument First_o, an INTEGER(4) array having N_i elements, returns the index of the 
first non-zero fill-in on each column if NoGood_o is false.

7. The argument NoGood_o, a LOGICAL(4) variable, is a flag that indicates if the input matrix 
[A]  is  suitable  for  the  subroutine.  If  NoGood_o=.True.,  the  input  matrix  [A]  cannot  be 
decomposed  and  there  is  no  output  returned;  otherwise  the  profile  A_io  returns  the 
decomposed  matrices  [L]  and  [U].  For  the  situation  where  NoGood_o=.True.,  please  see 
section 11.7.

11.3 Fortran Syntax for Subroutine  ppSubstitute

This subroutine performs forward and backward substitutions. Syntax is as follows:

ppSubstitute_CAG_4(A_i, N_i, UpperBandwidth_i, LowerBandwidth_i,    &
From_i, First_i, X_io)

ppSubstitute_CAG_8(A_i, N_i, UpperBandwidth_i, LowerBandwidth_i,    &
From_i, First_i ,X_io)

ppSubstitute_CAG_10(A_i, N_i, UpperBandwidth_i, LowerBandwidth_i,    &
  From_i, First_i, X_io)

ppSubstitute_CAG_16(A_i, N_i, UpperBandwidth_i, LowerBandwidth_i,    &
  From_i, First_i, X_io)

ppSubstitute_CAG_Z4(A_i, N_i, UpperBandwidth_i, LowerBandwidth_i,    &
  From_i, First_i, X_io)

ppSubstitute_CAG_Z8(A_i, N_i, UpperBandwidth_i, LowerBandwidth_i,    &
  From_i, First_i, X_io)

ppSubstitute_CAG_Z10(A_i, N_i, UpperBandwidth_i, LowerBandwidth_i,    &
    From_i, First_i, X_io)

ppSubstitute_CAG_Z16(A_i, N_i, UpperBandwidth_i, LowerBandwidth_i,    &
    From_i, First_i, X_io)

where

1. The argument A_i, array whose kind must be consistent with subroutine name convention, is 
the profile of matrix [A] that inputs the result from decomposition.

2. The argument N_i, an INTEGER(4) variable, is the order of matrix [A].
3. The argument UpperBandwidth_i, an INTEGER(4) variable, is the upper bandwidth of matrix 

[A]. The upper bandwidth is the maximal number of non-zero fill-ins on the right side of 
diagonal in a row.

4. The argument LowerBandwidth_i, an INTEGER(4) variable, is the lower bandwidth of matrix 
[A]. The lower bandwidth is the maximal number of non-zero fill-ins below the diagonal in a 
column.

5. The  argument  From_i,  an  INTEGER(4)  array  having  N_i  elements,  inputs  the  row index 
where the remaining coefficients on a row are from.

6. The argument First_i, an INTEGER(4) array having N_i elements, inputs the index of the first 
nonzero fill-in on each column from.

7. The argument X_io, array whose kind must be consistent with subroutine name convention, 
inputs the right side vector, and returns the solution.
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11.4 Fortran Syntax for Subroutine ppSolution

The  following  subroutines  first  decompose  matrix  [A]  into  the  product  of  [L][U]  with 
partial pivoting, and then perform forward and backward substitutions. Solve [A]{X}={B} in a 
single call. Syntax is as follows:

ppSolution_CAG_4(A_io, N_i, UpperBandwidth_i, LowerBandwidth_i,    &
From_x, First_x, X_io, NoGood_o)

ppSolution_CAG_8(A_io, N_i, UpperBandwidth_i, LowerBandwidth_i,    &
From_x,  First_x, X_io, NoGood_o)

ppSolution_CAG_10(A_io, N_i, UpperBandwidth_i, LowerBandwidth_i,    &
From_x, First_x, X_io, NoGood_o)

ppSolution_CAG_16(A_io, N_i, UpperBandwidth_i, LowerBandwidth_i,    &
From_x, First_x, X_io, NoGood_o)

ppSolution_CAG_Z4(A_io, N_i, UpperBandwidth_i, LowerBandwidth_i,    &
From_x, First_x, X_io, NoGood_o)

ppSolution_CAG_Z8(A_io, N_i, UpperBandwidth_i, LowerBandwidth_i,     &
From_x, First_x, X_io, NoGood_o)

ppSolution_CAG_Z10(A_io, N_i, UpperBandwidth_i, LowerBandwidth_i,    &
From_x, First_x, X_io, NoGood_o)

ppSolution_CAG_Z16(A_io, N_i, UpperBandwidth_i, LowerBandwidth_i,    &
From_x, First_x, X_io, NoGood_o)

where

1. The argument A_io, array whose kind must be consistent with subroutine name convention, is 
the profile of matrix [A], that inputs the original matrix and returns the decomposed result if 
the variable NoGood_o is false. For the definition of profile, please see section 11.5.

2. The argument N_i, an INTEGER(4) variable, is the order of matrix [A].
3. The argument UpperBandwidth_i, an INTEGER(4) variable, is the upper bandwidth of matrix 

[A]. The upper bandwidth is the maximal number of non-zero fill-ins on the right side of 
diagonal in a row.

4. The argument LowerBandwidth_i, an INTEGER(4) variable, is the lower bandwidth of matrix 
[A]. The lower bandwidth is the maximal number of non-zero fill-ins below the diagonal in a 
column.

5. The argument From_x, an INTEGER(4) array having N_i elements, is a working array.
6. The argument First_x, an INTEGER(4) array having N_i elements, is a working array.
7. The argument X_io, array whose kind must be consistent with subroutine name convention, 

inputs the right side vector, and returns the solution if NoGood_o is false.
8. The argument NoGood_o, a LOGICAL(4) variable, is a flag indicating if the input system is 

suitable for the subroutine. If NoGood_o=.True., the input system cannot be solved by the 
subroutine and there is no output returned; otherwise the profile A_io returns the decomposed 
matrices  [L]  and  [U],  and  vector  X_io  returns  the  solution.  For  the  situation  where 
NoGood_o=.True., please see section 11.7.

11.5  Profile

Similar  to  profile  of  variable-bandwidth  and  asymmetric  solver,  profile  for  constant-
bandwidth  and  asymmetric  solver  with  partial  pivoting  requires  extra  memory  spaces  for 
decomposition. Consider a constant-bandwidth and asymmetric matrix as follows:
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where the symbol "+" indicates non-zero fill-ins in the upper triangular part, and the symbol "=" 
indicates non-zero fill-ins on the diagonal, and the symbol "*" indicates non-zero fill-ins in the 
lower triangular part. For the matrix in the form of (11.1), the upper bandwidth=1, and the lower 
bandwidth is 2. The profile for the lower triangular part is defined by the non-zero fill-ins in the 
lower triangular part, but the profile for the upper triangular part requires extra memory spaces. 
The upper bandwidth enlarges by adding the lower bandwidth, and the profile for the form (11.1) 
is written as follows:

There are five symbols in the profile, each of which is discussed in the following:

1. The symbol "+" represents non-zero fill-ins in the upper triangular part of the original matrix.
2. The symbol "=" represents non-zero fill-ins on the diagonal of the original matrix.
3. The symbol "*" represents non-zero fill-ins in the lower triangular part of the original matrix.
4. The symbol % represents  extra  memory space in the profile.  All  the  extra  space must  be 

initialized to zero before calling any of the following subroutines

ppDecompose_CAG_4 
ppDecompose_CAG_8
ppDecompose_CAG_10
ppDecompose_CAG_16
ppDecompose_CAG_Z4 
ppDecompose_CAG_Z8
ppDecompose_CAG_Z10
ppDecompose_CAG_Z16

ppSolution_CAG_4
ppSolution_CAG_8
ppSolution_CAG_10
ppSolution_CAG_16
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ppSolution_CAG_Z4
ppSolution_CAG_Z8
ppSolution_CAG_Z10
ppSolution_CAG_Z16

Each extra space denoted by the symbol % returns a coefficient after decomposition.

5. The symbol & indicates an extra memory space whose content is never used.

Total length of profile is determined as

profile size = N * (UpperBandwidth + LowerBandwidth * 2 + 1) – LowerBandwidth (11.3)

where N is the matrix order,  and the variable  LowerBandwidth is the lower bandwidth of the 
original  matrix  before  decomposition,  and  UpperBandwidth is  the  upper  bandwidth  of  the 
original matrix before decomposition.

11.6  Data Storage Scheme

Data storage scheme for a constant-bandwidth and asymmetric solver with partial pivoting 
must be declared in a Fortran program, for example:

        INTEGER (4) :: Upper,Lower
        REAL (4) :: A(1-Upper-Lower:Lower,1)

where variable A here is a single precision profile for matrix [A], and variable "Upper" is the 
upper  bandwidth of  the  original  matrix,  and variable "Lower"  is  the  lower  bandwidth of  the 
original  matrix.  For  other  kinds  of  variable,  profile  must  be  properly  declared.  Then,  the 
coefficient Aij of matrix [A] is programmed in a Fortran program as A(I,J), no matter Aij is in 
the upper triangular part or in the lower triangular part

"Before  decomposition",  the  non-zero fill-ins  in  the  i-th column are  from the beginning 
index:

Maximum of (1,i-Upper) (11.4)

to the ending index:

Minimum of (N,i+Lower) (11.5)

where N is the order of matrix [A]. After decomposition, the bandwidth in the upper triangular 
part has enlarged, and the beginning index in the i-th column becomes

Maximum of (1,i-Upper-Lower). (11.6)

In  equations  (11.4),  (11.5),  and  (11.6),  the  variable  "Upper"  is  the  upper  bandwidth  of  the 
original matrix before decomposition, and the variable "Lower" is the lower bandwidth of the 
original matrix before decomposition.
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11.7  Failure of Calling Request

If  the  calling  request  fails,  solving  procedure  cannot  find  a  pivoting  row such  that  the 
absolute value of the diagonal element is not negligible compared to unity.

11.8  Fortran Example

For a given system [A]{X}={B}, the left side matrix [A] and the right side vector {B} are 
defined as follows:

in  which  the  order  N=7,  and  the  lower  bandwidth  LowerBandwidth=2,  and  the 
UpperBandwidth=1. A Fortran program for decomposition and substitution is as follows. There 
are four subroutines in the example: subroutines “Input” and “Output” have data storage scheme; 
subroutine  “ppDecompose_CAG_4” decomposes  matrix  [A]  with  partial  pivoting;  subroutine 
“ppSubstitute_CAG_4” performs forward and backward substitutions.

!  *** Example program ***
!  define variables where the length of A is determined by equation (11.3)
!
        PARAMETER (N=7)
        INTEGER*4  UpperBandwidth
        PARAMETER (UpperBandwidth=1)
        PARAMETER (LowerBandwidth=2)
        REAL*4 A (N*(UpperBandwidth+LowerBandwidth*2+1)- LowerBandwidth )
        REAL*4 X(N)
        LOGICAL*4 NoGood
        INTEGER*4 From(N)
        INTEGER*4 First(N)
        DATA X/21.0,11.0,122.0,19.0,333.0,1.0,3.0/
!
!  input the non-zero fill-ins of matrix [A]
!
        CALL Input(A,UpperBandwidth, LowerBandwidth,N)
!
!  decompose in parallel
!
        CALL ppDecompose_CAG_4(A,N,UpperBandwidth, LowerBandwidth,  &
                                                          From, First, NoGood)
!
!  stop if NoGood=.True.
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!
        IF(NoGood) STOP 'Cannot be decomposed'
!
!  perform substitutions in parallel
!
        CALL ppSubstitute_CAG_4(A,N,UpperBandwidth, LowerBandwidth, From, First, X)
!
!  output decomposed matrix
!
        CALL Output(A,N,UpperBandwidth, LowerBandwidth)
!
!  output the solution
!
        Write(*,'('' Solution is as:'')')
        Write(*,*) X
!
!  laipe done
!
        call laipeDone
!
        STOP
        END
        SUBROUTINE Input(A,Upper,Lower,N)
!
!
!  routine to demonstrate an application of data storage scheme
!  (A)FORTRAN CALL: CALL Input(A,Upper,Lower,N)
!     1.A: <R4> profile of matrix [A], dimension(*)
!     2.Upper: <I4> upper bandwidth
!     3.Lower: <I4> lower bandwidth
!     4.N: <I4> order of matrix
!
!  dummy arguments
!
        INTEGER*4 Upper,Lower,N
        REAL*4 A(1-Upper-Lower:Lower,1)
!
!  initialize
!     The ending bound of I4TEMP is determined by equation (11.3)
!
        DO I4TEMP=1,N*(Upper+Lower*2+1)-Lower
               A(I4TEMP,1)=0.0
        END DO
!
!  input
!
        A(1,1)= 1.0
        A(2,1)= 4.0
        A(3,1)= 2.0
        A(1,2)= 2.0
        A(2,2)=25.0
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        A(3,2)=29.0
        A(4,2)=99.0
        A(2,3)= 4.0
        A(3,3)=14.0
        A(4,3)=34.0
        A(5,3)= 3.0
        A(3,4)= 9.0
        A(4,4)=19.0
        A(5,4)=23.0
        A(6,4)=11.0
        A(4,5)=71.0
        A(5,5)= 5.0
        A(6,5)= 7.0
        A(7,5)= 3.0
        A(5,6)=93.0
        A(6,6)=22.0
        A(7,6)= 2.0
        A(6,7)= 4.0
        A(7,7)= 9.0
!
        RETURN
        END
        SUBROUTINE Output(A,N,Upper,Lower)
!
!
!  routine to output the decomposed matrix by data storage scheme
!  (A)FORTRAN CALL: CALL Output(A,N,Upper,Lower)
!     1.A: <R4> profile of matrix [A], dimension(*)
!     2.N: <I4> order of matrix [A]
!     3.Upper: <I4> upper bandwidth
!     4.Lower: <I4> lower bandwidth
!
!  dummy arguments
!
        INTEGER*4 N,Upper,Lower
        REAL*4 A(1-Upper-Lower:Lower,1)
!
!  local variables
!
        INTEGER*4 Column,Row
!
!  output the coefficients on non-zero fill-ins. The beginning and ending indices for each
!  column are defined in equation (11.6) and equation (11.5)
!
        WRITE(*,'('' Row  Column  Coefficient'')')
        DO Column=1,N
               DO Row=MAX0(1,Column-Upper-Lower), MIN0(N,Column+Lower)
                     WRITE(*,'(I4,I6,F9.3)') Row,Column,A(Row,Column)
              END DO
        END DO
!
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        END
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Chapter 12. Constant-Bandwidth, Symmetric,
and Positive Definite Solvers
with Partial Pivoting

12.1  Purpose

This chapter has subroutines for the solution of [A]{X}={B} with partial pivoting where the 
left side matrix [A] is constant-bandwidth, symmetric, and positive definite. The non-zero fill-ins 
of matrix [A] have a shape, for example, as:

where the symbol "=" indicates non-zero fill-ins on the diagonal, and the symbol "*" indicates 
non-zero  fill-ins  in  the  lower  triangular  part.  Since  the  matrix  [A]  is  symmetric,  the  upper 
bandwidth is equal to the lower bandwidth before decomposition. A partial pivoting generally 
disturbs symmetry. A decomposed result is not symmetric, such that the upper triangular part is 
different  from  the  lower  triangular  part  on  the  decomposed  result.  When  applying  the 
subroutines, just input the lower triangular part of the original matrix, and LAIPE solvers output 
the lower and upper triangular matrices after decomposition.

Three  types  of  subroutine  are  introduced  in  this  chapter,  which  perform the  following 
functions:

1. Decompose matrix [A] into the product of [L][U] where matrix [L] is the lower triangular 
matrix and matrix [U] is the upper triangular matrix.

2. Perform forward and backward substitutions.
3. Solve [A]{X}={B} in a single call.

Decomposition  and  substitution  must  be  called  in  order,  and  work  together  as  a  pair. 
Subroutines are as follows:

ppDecompose_CSP_4
ppDecompose_CSP_8
ppDecompose_CSP_10
ppDecompose_CSP_16
ppDecompose_CSP_Z4
ppDecompose_CSP_Z8
ppDecompose_CSP_Z10
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ppDecompose_CSP_Z16

ppSubstitute_CSP_4
ppSubstitute_CSP_8
ppSubstitute_CSP_10
ppSubstitute_CSP_16
ppSubstitute_CSP_Z4
ppSubstitute_CSP_Z8
ppSubstitute_CSP_Z10
ppSubstitute_CSP_Z16

ppSolution_CSP_4
ppSolution_CSP_8
ppSolution_CSP_10
ppSolution_CSP_16
ppSolution_CSP_Z4
ppSolution_CSP_Z8
ppSolution_CSP_Z10
ppSolution_CSP_Z16

12.2  Fortran Syntax for Subroutine ppDecompose

The following subroutines  decompose matrix  [A]  into [A]=[L][U]  with  partial  pivoting. 
Syntax is as follows:

ppDecompose_CSP_4(A_io,N_i,LowerBandwidth_i,From_o, First_o,NoGood_o)
ppDecompose_CSP_8(A_io,N_i,LowerBandwidth_i,From_o,First_o, NoGood_o)
ppDecompose_CSP_10(A_io,N_i,LowerBandwidth_i,From_o,First_o, NoGood_o)
ppDecompose_CSP_16(A_io,N_i,LowerBandwidth_i,From_o,First_o, NoGood_o)
ppDecompose_CSP_Z4(A_io,N_i,LowerBandwidth_i,From_o,First_o, NoGood_o)
ppDecompose_CSP_Z8(A_io,N_i,LowerBandwidth_i,From_o,First_o, NoGood_o)
ppDecompose_CSP_Z10(A_io,N_i,LowerBandwidth_i,From_o,First_o, NoGood_o)
ppDecompose_CSP_Z16(A_io,N_i,LowerBandwidth_i,From_o,First_o, NoGood_o)

where

1. The argument A_io, array whose kind must be consistent with subroutine name convention, is 
the profile of matrix [A] that inputs the original matrix and returns the result if the variable 
NoGood_o is false. For the definition of profile, please see section 12.5.

2. The argument N_i, an INTEGER(4) variable, is the order of matrix [A].
3. The argument LowerBandwidth_i, an INTEGER(4) variable, is the lower bandwidth of matrix 

[A]. The lower bandwidth is the maximal number of non-zero fill-ins below the diagonal in a 
column.

4. The argument From_o, an INTEGER(4) array having N_i elements,  returns the row index 
where the remaining elements are from if NoGood_o is false.

5. The argument First_o, an INTEGER(4) array having N_i elements, returns the index of the 
first nonzero fill-in on each column if NoGood_o is false.

6. The argument NoGood_o, a LOGICAL(4) variable, is a flag that indicates if the input matrix 
[A]  is  suitable  for  the  subroutine.  If  NoGood_o=.True.,  the  input  matrix  [A]  cannot  be 
decomposed  and  there  is  no  output  returned;  otherwise  the  profile  A_io  returns  the 
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decomposed  matrices  [L]  and  [U].  For  the  situation  where  NoGood_o=.True.,  please  see 
section 12.7.

12.3  Fortran Syntax for Subroutine ppSubstitute

The  following  subroutines  perform  forward  and  backward  substitutions.  Syntax  is  as 
follows:

ppSubstitute_CSP_4(A_i, N_i, LowerBandwidth_i, From_i, First_i, X_io)
ppSubstitute_CSP_8(A_i, N_i, LowerBandwidth_i, From_i, First_i, X_io)
ppSubstitute_CSP_10(A_i, N_i, LowerBandwidth_i, From_i, First_i, X_io)
ppSubstitute_CSP_16(A_i, N_i, LowerBandwidth_i, From_i, First_i, X_io)
ppSubstitute_CSP_Z4(A_i, N_i, LowerBandwidth_i, From_i, First_i, X_io)
ppSubstitute_CSP_Z8(A_i, N_i, LowerBandwidth_i, From_i, First_i, X_io)
ppSubstitute_CSP_Z10(A_i, N_i, LowerBandwidth_i, From_i, First_i, X_io)
ppSubstitute_CSP_Z16(A_i, N_i, LowerBandwidth_i, From_i, First_i, X_io)

where

1. The argument A_i, array whose kind must be consistent with subroutine name convention, is 
the profile of matrix [A] that inputs the result from decomposition.

2. The argument N_i, an INTEGER(4) variable, is the order of matrix [A].
3. The argument LowerBandwidth_i, an INTEGER(4) variable, is the lower bandwidth of matrix 

[A]. The lower bandwidth is the maximal number of non-zero fill-ins below the diagonal in a 
column.

4. The  argument  From_i,  an  INTEGER(4)  array  having  N_i  elements,  inputs  the  row index 
where the remaining elements are from.

5. The argument First_i, an INTEGER(4) array having N_i elements, inputs the index of the first 
non-zero fill-in on each column.

6. The argument X_io, array whose kind must be consistent with subroutine name convention, 
inputs the right side vector, and returns the solution.

12.4 Fortran Syntax for Subroutine ppSolution

The  following  subroutines  first  decompose  matrix  [A]  into  the  product  of  [L][U]  with 
partial pivoting, and then perform forward and backward substitutions. Solve [A]{X}={B} in a 
single call. Syntax is as follows:

ppSolution_CSP_4(A_io,N_i,LowerBandwidth_i,From_x,First_x,X_io,NoGood_o)
ppSolution_CSP_8(A_io,N_i,LowerBandwidth_i,From_x,First_x,X_io,NoGood_o)
ppSolution_CSP_10(A_io,N_i,LowerBandwidth_i,From_x,First_x,X_io,NoGood_o)
ppSolution_CSP_16(A_io,N_i,LowerBandwidth_i,From_x,First_x,X_io,NoGood_o)
ppSolution_CSP_Z4(A_io,N_i,LowerBandwidth_i,From_x,First_x,X_io,NoGood_o)
ppSolution_CSP_Z8(A_io,N_i,LowerBandwidth_i,From_x,First_x,X_io,NoGood_o)
ppSolution_CSP_Z10(A_io,N_i,LowerBandwidth_i,From_x,First_x,X_io,NoGood_o)
ppSolution_CSP_Z16(A_io,N_i,LowerBandwidth_i,From_x,First_x,X_io,NoGood_o)

where
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1. The argument A_io, array whose kind must be consistent with subroutine name convention, is 
the profile of matrix [A], that inputs the original matrix and returns the decomposed result if 
the variable NoGood_o is false. For the definition of profile, please see section 12.5.

2. The argument N_i, an INTEGER(4) variable, is the order of matrix [A].
3. The argument LowerBandwidth_i, an INTEGER(4) variable, is the lower bandwidth of matrix 

[A]. The lower bandwidth is the maximal number of non-zero fill-ins below the diagonal in a 
column.

4. The argument From_x, an INTEGER(4) array having N_i elements, is a working array.
5. The argument First_x, an INTEGER(4) array having N_i elements, is a working array.
6. The argument X_io, array whose kind must be consistent with subroutine name convention, 

inputs the right side vector, and returns the solution if NoGood_o is false.
7. The argument NoGood_o, a LOGICAL(4) variable, is a flag indicating if the input system is 

suitable for the subroutine. If NoGood_o=.True., the input system cannot be solved by the 
subroutine and there is no output returned; otherwise the profile A_io returns the decomposed 
matrices  [L]  and  [U],  and  vector  X_io  returns  the  solution.  For  the  situation  where 
NoGood_o=.True., please see section 12.7.

12.5  Profile

Profile  for  a  constant-bandwidth,  symmetric,  and  positive  definite  solver  with  partial 
pivoting  always  requires  extra  memory  spaces  for  the  upper  triangular  part.  There  are  two 
reasons for the extra memory space. The first one is that pivoting disturbs symmetry, such that 
the upper triangular part is not the transport of lower triangular part and the upper triangular part 
has to be completely saved. The second reason is that pivoting may enlarge the bandwidth of an 
upper triangular part.

Consider a constant-bandwidth and symmetric matrix as follows.

where the symbol "=" indicates non-zero fill-ins on the diagonal, and the symbol "*" indicates 
non-zero fill-ins  in the lower triangular  part.  For the matrix in the form of (12.1),  the lower 
bandwidth is 2. Since the example matrix is symmetric, the upper bandwidth is 2. The profile for 
the lower triangular part is defined by the non-zero fill-ins in the lower triangular part, but the 
profile for the upper triangular part enlarges by adding the lower bandwidth. The profile for the 
example in form (12.1) is then written as follows
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1. The symbol "=" represents non-zero fill-ins on the diagonal of the original matrix.
2. The symbol "*" represents non-zero fill-ins in the lower triangular part of the original matrix.
3. The symbol "%" represents an extra memory space in the profile. The space returns the upper 

triangular part of the decomposed matrix. It is unnecessary to initialize the space denoted by 
the symbol "%".

4. The symbol "&"indicates an extra memory space whose content is never used.

Total length of profile is determined as

profile size = N * (LowerBandwidth * 3 + 1) – LowerBandwidth (12.3)

where N is the matrix order, and the variable LowerBandwidth is the lower bandwidth.

12.6  Data Storage Scheme

Data storage scheme for a constant-bandwidth and symmetric solver with partial pivoting 
must be declared in a Fortran program, for example:

        INTEGER (4) :: LowerBandwidth
        REAL (4) :: A(1-LowerBandwidth*2:LowerBandwidth,1)

where  variable  A  here  is  a  single  precision  profile  for  a  matrix  [A],  and  the  variable 
"LowerBandwidth" is the lower bandwidth of the matrix. For other kinds of variable,  profile 
must be properly declared. Then, the coefficient  Aij of matrix [A] is programmed in a Fortran 

program as A(I,J), no matter Aij is in the upper triangular part or in the lower triangular part.

"Before decomposition", the non-zero fill-ins in the i-th column are from the beginning 
index:

Maximum of (1,i-LowerBandwidth) (12.4)

to the ending index:

Minimum of (N,i+LowerBandwidth) (12.5)
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where N is the order of matrix [A]. "After decomposition", the bandwidth in the upper triangular 
part has enlarged, and the beginning index in the i-th column becomes

Maximum of (1,i-LowerBandwidth*2) (12.6)

12.7  Failure of Calling Request

If  the  calling  request  fails,  solving  procedure  cannot  find  a  pivoting  row such  that  the 
absolute value of diagonal element is not negligible compared to unity.

12.8  Fortran Example

For a given system [A]{X}={B}, the left side matrix [A] and the right side vector {B} are 
defined as: 

in which the order N=7, and the lower bandwidth LowerBandwidth=2. A Fortran program for 
decomposition  and  substitution  is  as  follows.  There  are  four  subroutines  in  the  example: 
subroutines “Input” and “Output” have data storage scheme; subroutine “ppDecompose_CSP_4” 
decomposes matrix [A]; subroutine “ppSubstitute_CSP_4” performs substitutions.

!  *** Example program ***
!  define variables where the length of A is determined by equation (12.3)
!
        PARAMETER (N=7)
        INTEGER*4  LowerBandwidth
        PARAMETER (LowerBandwidth=2)
        REAL*4 A(N*(LowerBandwidth*3+1)-LowerBandwidth)
        REAL*4 X(N)
        LOGICAL*4 NoGood
        INTEGER*4 From(N)
        INTEGER*4 First(N)
        DATA X/21.0,11.0,122.0,19.0,333.0,1.0,3.0/
!
!  input the non-zero fill-ins of matrix [A]
!
        CALL Input(A,LowerBandwidth,N)
!
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!  decompose in parallel
!
        CALL ppDecompose_CSP_4(A,N,LowerBandwidth, From, First, NoGood)
!
!  stop if NoGood=.True.
!
        IF(NoGood) STOP 'Cannot be decomposed'
!
!  perform substitutions in parallel
!
        CALL ppSubstitute_CSP_4(A,N,LowerBandwidth,From,First, X)
!
!  output decomposed matrix
!
         CALL Output(A,N,LowerBandwidth)
!
!  output the solution
!
        Write(*,'('' Solution is as:'')')
        Write(*,*) X
!
!  laipe done
!
        call laipeDone
!
        STOP
        END
        SUBROUTINE Input(A,Lower,N)
!
!
!  routine to demonstrate an application of data storage scheme
!  (A)FORTRAN CALL: CALL Input(A,Lower,N)
!     1.A: <R4> profile of matrix [A], dimension(*)
!     2.Lower: <I4> lower bandwidth
!     3.N: <I4> order of matrix
!
!  dummy arguments
!
        INTEGER*4 Lower,N
        REAL*4 A(1-Lower*2:Lower,1)
!
!  input
!
        A(1,1)= 6.0
        A(2,1)= 4.0
        A(3,1)= 2.0
        A(2,2)=55.0
        A(3,2)=29.0
        A(4,2)= 9.0
        A(3,3)=44.0
        A(4,3)=34.0
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        A(5,3)= 3.0
        A(4,4)=91.0
        A(5,4)= 2.0
        A(6,4)=11.0
        A(5,5)=15.0
        A(6,5)= 7.0
        A(7,5)= 3.0
        A(6,6)=22.0
        A(7,6)= 2.0
        A(7,7)= 9.0
!
        RETURN
        END
        SUBROUTINE Output(A,N,Lower)
!
!
!  routine to output the decomposed matrix by data storage scheme
!  (A)FORTRAN CALL: CALL Output(A,N,Lower)
!     1.A: <R4> profile of matrix [A], dimension(*)
!     2.N: <I4> order of matrix [A]
!     3.Lower: <I4> lower bandwidth
!
!  dummy arguments
!
        INTEGER*4 N,Lower
        REAL*4 A(1-Lower*2:Lower,1)
!
!  local variables
!
        INTEGER*4 Column,Row
!
!  output the coefficients on non-zero fill-ins
!  The beginning and ending indices for each column are defined in
!  equation (12.6) and equation (12.5)
!
        WRITE(*,'('' Row  Column  Coefficient'')')
        DO Column=1,N
               DO Row=MAX0(1,Column-Lower*2), MIN0(N,Column+Lower)
                      WRITE(*,'(I4,I6,F9.3)') Row,Column,A(Row,Column)
               END DO
        END DO
!
        RETURN
        END
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Chapter 13. Constant-Bandwidth and Symmetric Solvers
with Partial Pivoting

13.1  Purpose

This chapter has subroutines for the solution of [A]{X}={B} with partial pivoting where the 
left side matrix [A] has a constant bandwidth, and is symmetric. There is no consideration of 
definiteness of matrix [A]. The non-zero fill-ins of matrix [A] have a shape, for example, as:

where the symbol "=" indicates non-zero fill-ins on the diagonal, and the symbol "*" indicates 
non-zero  fill-ins  in  the  lower  triangular  part.  Since  the  matrix  [A]  is  symmetric,  the  upper 
bandwidth is equal to the lower bandwidth before decomposition. A partial pivoting generally 
disturbs symmetry. A decomposed result is not symmetric, such that the upper triangular part is 
different  from the lower triangular  part.  When applying the subroutines,  just  input  the lower 
triangular part of the original matrix, and LAIPE solvers output the lower and upper triangular 
matrices after decomposition.

Three  types  of  subroutine  are  introduced  in  this  chapter,  which  perform the  following 
functions:

1. Decompose matrix [A] into the product of [L][U] where matrix [L] is the lower triangular 
matrix and matrix [U] is the upper triangular matrix.

2. Perform forward and backward substitutions.
3. Solve [A]{X}={B} in a single call.

Decomposition  and  substitution  must  be  called  in  order,  and  work  together  as  a  pair. 
Subroutines are as:

ppDecompose_CSG_4
ppDecompose_CSG_8
ppDecompose_CSG_10
ppDecompose_CSG_16
ppDecompose_CSG_Z4
ppDecompose_CSG_Z8
ppDecompose_CSG_Z10
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ppDecompose_CSG_Z16

ppSubstitute_CSG_4
ppSubstitute_CSG_8
ppSubstitute_CSG_10
ppSubstitute_CSG_16
ppSubstitute_CSG_Z4
ppSubstitute_CSG_Z8
ppSubstitute_CSG_Z10
ppSubstitute_CSG_Z16

ppSolution_CSG_4
ppSolution_CSG_8
ppSolution_CSG_10
ppSolution_CSG_16
ppSolution_CSG_Z4
ppSolution_CSG_Z8
ppSolution_CSG_Z10
ppSolution_CSG_Z16

13.2  Fortran Syntax for Subroutine ppDecompose

The following subroutines  decompose matrix  [A]  into [A]=[L][U]  with  partial  pivoting. 
Syntax is as follows:

ppDecompose_CSG_4(A_io,N_i,LowerBandwidth_i,From_o,First_o,NoGood_o)
ppDecompose_CSG_8(A_io,N_i,LowerBandwidth_i,From_o,First_o,NoGood_o)
ppDecompose_CSG_10(A_io,N_i,LowerBandwidth_i,From_o,First_o,NoGood_o)
ppDecompose_CSG_16(A_io,N_i,LowerBandwidth_i,From_o,First_o,NoGood_o)
ppDecompose_CSG_Z4(A_io,N_i,LowerBandwidth_i,From_o,First_o,NoGood_o)
ppDecompose_CSG_Z8(A_io,N_i,LowerBandwidth_i,From_o,First_o,NoGood_o)
ppDecompose_CSG_Z10(A_io,N_i,LowerBandwidth_i,From_o,First_o,NoGood_o)
ppDecompose_CSG_Z16(A_io,N_i,LowerBandwidth_i,From_o,First_o,NoGood_o)

where

1. The argument A_io, array whose kind must be consistent with subroutine name convention, is 
the profile of matrix [A] that inputs the original matrix and returns the result if the variable 
NoGood_o is false. For the definition of profile, please see section 13.5.

2. The argument N_i, an INTEGER(4) variable, is the order of matrix [A].
3. The argument LowerBandwidth_i, an INTEGER(4) variable, is the lower bandwidth of matrix 

[A]. The lower bandwidth is the maximal number of non-zero fill-ins below the diagonal in a 
column.

4. The argument From_o, an INTEGER(4) array having N_i elements,  returns the row index 
where the remaining elements are from if NoGood_o is false.

5. The argument First_o, an INTEGER(4) array having N_i elements, returns the index of the 
first nonzero fill-in on each column if NoGood_o is false.

6. The argument NoGood_o, a LOGICAL(4) variable, is a flag that indicates if the input matrix 
[A]  is  suitable  for  the  subroutine.  If  NoGood_o=.True.,  the  input  matrix  [A]  cannot  be 
decomposed  and  there  is  no  output  returned;  otherwise  the  profile  A_io  returns  the 
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decomposed  matrices  [L]  and  [U].  For  the  situation  where  NoGood_o=.True.,  please  see 
section 13.7.

13.3  Fortran Syntax for Subroutine ppSubstitute

The  following  subroutines  perform  forward  and  backward  substitutions.  Syntax  is  as 
follows:

ppSubstitute_CSG_4(A_i,N_i,LowerBandwidth_i,From,_i,First_i,X_io)
ppSubstitute_CSG_8(A_i,N_i,LowerBandwidth_i,From_i,First_i,X_io)
ppSubstitute_CSG_10(A_i,N_i,LowerBandwidth_i,From_i,First_i,X_io)
ppSubstitute_CSG_16(A_i,N_i,LowerBandwidth_i,From_i,First_i,X_io)
ppSubstitute_CSG_Z4(A_i,N_i,LowerBandwidth_I,From_i,First_i,X_io)
ppSubstitute_CSG_Z8(A_i,N_i,LowerBandwidth_i,From_i,First_i,X_io)
ppSubstitute_CSG_Z10(A_i,N_i,LowerBandwidth_i,From_i,First_i,X_io)
ppSubstitute_CSG_Z16(A_i,N_i,LowerBandwidth_i,From_i,First_i,X_io)

where

1. The argument A_i, array whose kind must be consistent with subroutine name convention, is 
the profile of matrix [A] that inputs the result from decomposition.

2. The argument N_i, an INTEGER(4) variable, is the order of matrix [A].
3. The argument LowerBandwidth_i, an INTEGER(4) variable, is the lower bandwidth of matrix 

[A]. The lower bandwidth is the maximal number of non-zero fill-ins below the diagonal in a 
column.

4. The  argument  From_i,  an  INTEGER(4)  array  having  N_i  elements,  inputs  the  row index 
where the remaining elements are from.

5. The argument First_i, an INTEGER(4) array having N_i elements, inputs the index of the first 
nonzero fill-in on each column.

6. The argument X_io, array whose kind must be consistent with subroutine name convention, 
inputs the right side vector, and returns the solution.

13.4  Fortran Syntax for Subroutine ppSolution

The  following  subroutines  first  decompose  matrix  [A]  into  the  product  of  [L][U]  with 
partial  pivoting,  and  then  perform  forward  and  backward  substitutions.  Solve  the  system 
[A]{X}={B} in a single call. Syntax is as follows:

ppSolution_CSG_4(A_io, N_i, LowerBandwidth_i, From_x, First_x, X_io, NoGood_o)
ppSolution_CSG_8(A_io, N_i, LowerBandwidth_i, From_x, First_x, X_io, NoGood_o)
ppSolution_CSG_10(A_io, N_i, LowerBandwidth_i, From_x, First_x, X_io, NoGood_o)
ppSolution_CSG_16(A_io, N_i, LowerBandwidth_i, From_x, First_x, X_io, NoGood_o)
ppSolution_CSG_Z4(A_io, N_i, LowerBandwidth_i, From_x, First_x, X_io, NoGood_o)
ppSolution_CSG_Z8(A_io, N_i, LowerBandwidth_i, From_x, First_x, X_io, NoGood_o)
ppSolution_CSG_Z10(A_io, N_i, LowerBandwidth_i, From_x, First_x, X_io, NoGood_o)
ppSolution_CSG_Z16(A_io, N_i, LowerBandwidth_i, From_x, First_x, X_io, NoGood_o)

where
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1. The argument A_io, array whose kind must be consistent with subroutine name convention, is 
the profile of matrix [A], that inputs the original matrix and returns the decomposed result if 
the variable NoGood_o is false. For the definition of profile, please see section 13.5.

2. The argument N_i, an INTEGER(4) variable, is the order of matrix [A].
3. The argument LowerBandwidth_i, an INTEGER(4) variable, is the lower bandwidth of matrix 

[A]. The lower bandwidth is the maximal number of non-zero fill-ins below the diagonal in a 
column.

4. The argument From_x, an INTEGER(4) array having N_i elements, is a working array.
5. The argument First_x, an INTEGER(4) array having N_i elements, is a working array.
6. The argument X_io, array whose kind must be consistent with subroutine name convention, 

inputs the right side vector, and returns the solution if NoGood_o is false.
7. The argument NoGood_o, a LOGICAL(4) variable, is a flag indicating if the input system is 

suitable for the subroutine. If NoGood_o=.True., the input system cannot be solved and there 
is no output;  otherwise the profile A_io returns the decomposed matrices [L] and [U], and 
vector X_io returns the solution. For the situation where NoGood_o=.True., please see section 
13.7.

13.5  Profile

Profile for a constant-bandwidth and symmetric solver with partial pivoting always requires 
extra  memory spaces  for  the  upper  triangular  part  of  the  decomposed  result.  There  are  two 
reasons for the extra memory space. The first one is that pivoting disturbs symmetry, such that 
the upper triangular part is not the transport of lower triangular part and the upper triangular part 
has to be completely saved. The second reason is that pivoting may enlarge the bandwidth of an 
upper triangular part.

Consider a constant-bandwidth and symmetric matrix as follows.

where the symbol "=" indicates non-zero fill-ins on the diagonal, and the symbol "*" indicates 
non-zero fill-ins  in the lower triangular  part.  For the matrix in the form of (13.1),  the lower 
bandwidth is 2. Since the example matrix is symmetric, the upper bandwidth is 2. The profile for 
the lower triangular part is defined by the non-zero fill-ins in the lower triangular part, but the 
profile for the upper triangular part enlarges by adding the lower bandwidth. The profile for the 
example in form (13.1) is then written as follows
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profile size = N * (LowerBandwidth * 3 + 1) – LowerBandwidth (13.3)

where N is the matrix order, and the variable LowerBandwidth is the lower bandwidth.

13.6  Data Storage Scheme

Data storage scheme for a constant-bandwidth and symmetric solver with partial pivoting 
must be declared in a Fortran program, for example:

        INTEGER (4) :: LowerBandwidth
        REAL (4) :: A(1-LowerBandwidth*2:LowerBandwidth,1)

where  variable  A  here  is  a  single  precision  profile  for  matrix  [A],  and  the  variable 
"LowerBandwidth" is the lower bandwidth of the matrix. For other kinds of variable,  profile 
must be properly declared. Then, the coefficient  Aij of matrix [A] is programmed in a Fortran 

program as A(I,J), no matter Aij is in the upper triangular part or in the lower triangular part.

"Before decomposition", the non-zero fill-ins in the i-th column are from the beginning 
index:

Maximum of (1,i-LowerBandwidth) (13.4)

to the ending index:

Minimum of (N,i+LowerBandwidth) (13.5)

where N is the order of matrix [A]. "After decomposition", the bandwidth in the upper triangular 
part has enlarged, and the beginning index in the i-th column becomes

Maximum of (1,i-LowerBandwidth*2). (13.6)

13.7  Failure of Calling Request

If  the  calling  request  fails,  solving  procedure  cannot  find  a  pivoting  row such  that  the 
absolute value of diagonal element is not negligible compared to unity.
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13.8  Fortran Example

For a given system [A]{X}={B}, the left side matrix [A] and the right side vector {B} are 
defined as:

in which the order N=7, and the lower bandwidth LowerBandwidth=2. A Fortran program for 
decomposition  and  substitution  is  as  follows.  There  are  four  subroutines  in  the  example. 
Subroutines  “Input”  and  “Output”  have  data  storage  scheme;  subroutine 
“ppDecompose_CSG_4”  decomposes  matrix  [A];  subroutine  “ppSubstitute_CSG_4”  performs 
substitutions.

!  *** Example program ***
!  define variables where the length of A is determined by equation (13.3)
!
        PARAMETER (N=7)
        INTEGER*4  LowerBandwidth
        PARAMETER (LowerBandwidth=2)
        REAL*4 A(N*(LowerBandwidth*3+1)-LowerBandwidth)
        REAL*4 X(N)
        LOGICAL*4 NoGood
        INTEGER*4 From(N)
        INTEGER*4 First(N)
        DATA X/21.0,11.0,122.0,19.0,333.0,1.0,3.0/
!
!  input the non-zero fill-ins of matrix [A]
!
        CALL Input(A,LowerBandwidth,N)
!
!  decompose in parallel
!
        CALL ppDecompose_CSG_4(A,N, LowerBandwidth, From, First, NoGood)
!
!  stop if NoGood=.True.
!
        IF(NoGood) STOP 'Cannot be decomposed'
!
!  perform substitutions in parallel
!
        CALL ppSubstitute_CSG_4(A,N, LowerBandwidth, From, First, X)
!
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!  output decomposed matrix
!
        CALL Output(A,N,LowerBandwidth)
!
!  output the solution
!
        Write(*,'('' Solution is as:'')')
        Write(*,*) X
!
!  laipe done
!
        call laipeDone
!
        STOP
        END
        SUBROUTINE Input(A,Lower,N)
!
!
!  routine to demonstrate an application of data storage scheme
!  (A)FORTRAN CALL: CALL Input(A,Lower,N)
!     1.A: <R4> profile of matrix [A], dimension(*)
!     2.Lower: <I4> lower bandwidth
!     3.N: <I4> order of matrix
!
!  dummy arguments
!
        INTEGER*4 Lower,N
        REAL*4 A(1-Lower*2:Lower,1)
!
!  input
!
        A(1,1)= 6.0
        A(2,1)= 4.0
        A(3,1)= 2.0
        A(2,2)= 5.0
        A(3,2)=29.0
        A(4,2)= 9.0
        A(3,3)=44.0
        A(4,3)=34.0
        A(5,3)= 3.0
        A(4,4)= 1.0
        A(5,4)= 2.0
        A(6,4)=11.0
        A(5,5)=15.0
        A(6,5)= 7.0
        A(7,5)= 3.0
        A(6,6)=22.0
        A(7,6)= 2.0
        A(7,7)= 9.0
!
        RETURN
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        END
        SUBROUTINE Output(A,N,Lower)
!
!
!  routine to output the decomposed matrix by data storage scheme
!  (A)FORTRAN CALL: CALL Output(A,N,Lower)
!     1.A: <R4> profile of matrix [A], dimension(*)
!     2.N: <I4> order of matrix [A]
!     3.Lower: <I4> lower bandwidth
!
!  dummy arguments
!
        INTEGER*4 N,Lower
        REAL*4 A(1-Lower*2:Lower,1)
!
!  local variables
!
        INTEGER*4 Column,Row
!
!  output the coefficients on non-zero fill-ins
!  The beginning and ending indices for each column are defined in
!  equation (13.6) and equation (13.5)
!
        WRITE(*,'('' Row  Column  Coefficient'')')
        DO Column=1,N
               DO Row=MAX0(1,Column-Lower*2), MIN0(N,Column+Lower)
                     WRITE(*,'(I4,I6,F9.3)') Row,Column,A(Row,Column)
               END DO
        END DO
!
        RETURN
        END
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Chapter 14.     Dense and Asymmetric Solvers with Partial Pivoting

14.1  Purpose

This chapter has subroutines for the solution of [A]{X}={B} with partial pivoting where the 
left side matrix [A] is dense and asymmetric. There is no consideration of definiteness of matrix 
[A]. The non-zero fill-ins of matrix [A] have a simple shape, for example, as:

where the symbol "*" indicates non-zero fill-ins. Three types of subroutine are introduced in this 
chapter, which perform the following functions:

1. Decompose matrix [A] into the product of [L][U] where matrix [L] is the lower triangular 
matrix and matrix [U] is the upper triangular matrix.

2. Perform forward and backward substitutions.
3. Solve [A]{X}={B} in a single call.

Decomposition  and  substitution  must  be  called  in  order,  and  work  together  as  a  pair. 
Subroutines are as follows:

ppDecompose_DAG_4
ppDecompose_DAG_8
ppDecompose_DAG_10
ppDecompose_DAG_16
ppDecompose_DAG_Z4
ppDecompose_DAG_Z8
ppDecompose_DAG_Z10
ppDecompose_DAG_Z16

ppSubstitute_DAG_4
ppSubstitute_DAG_8
ppSubstitute_DAG_10
ppSubstitute_DAG_16
ppSubstitute_DAG_Z4
ppSubstitute_DAG_Z8
ppSubstitute_DAG_Z10
ppSubstitute_DAG_Z16
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ppSolution_DAG_4
ppSolution_DAG_8
ppSolution_DAG_10
ppSolution_DAG_16
ppSolution_DAG_Z4
ppSolution_DAG_Z8
ppSolution_DAG_Z10
ppSolution_DAG_Z16

14.2  Fortran Syntax for Subroutine ppDecompose

The following subroutines  decompose matrix  [A]  into [A]=[L][U]  with  partial  pivoting. 
Syntax is as follows:

ppDecompose_DAG_4(A_io, N_i, RowOrder_io, NoGood_o)
ppDecompose_DAG_8(A_io, N_i, RowOrder_io, NoGood_o)
ppDecompose_DAG_10(A_io, N_i, RowOrder_io, NoGood_o)
ppDecompose_DAG_16(A_io, N_i, RowOrder_io, NoGood_o)
ppDecompose_DAG_Z4(A_io, N_i, RowOrder_io, NoGood_o)
ppDecompose_DAG_Z8(A_io, N_i, RowOrder_io, NoGood_o)
ppDecompose_DAG_Z10(A_io, N_i, RowOrder_io, NoGood_o)
ppDecompose_DAG_Z16(A_io, N_i, RowOrder_io, NoGood_o)

where

1. The argument A_io, array whose kind must be consistent with subroutine name convention, is 
the profile of matrix [A] that inputs the original matrix and returns the result if the variable 
NoGood_o is false. For the definition of profile, please see section 14.5.

2. The argument N_i, an INTEGER(4) variable, is the order of matrix [A].
3. The argument RowOrder_io, an INTEGER(4) array having N_i elements, enters a sequence of 

consecutive numbers from one to N_i and returns the pivoting rows if NoGood_o is false.
4. The argument NoGood_o, a LOGICAL(4) variable, is a flag that indicates if the input matrix 

[A]  is  suitable  for  the  subroutine.  If  NoGood_o=.True.,  the  input  matrix  [A]  cannot  be 
decomposed  and  there  is  no  output  returned;  otherwise  the  profile  A_io  returns  the 
decomposed  matrices  [L]  and  [U].  For  the  situation  where  NoGood_o=.True.,  please  see 
section 14.7.

14.3  Fortran Syntax for Subroutine ppSubstitute

The  following  subroutines  perform  forward  and  backward  substitutions.  Syntax  is  as 
follows:

ppSubstitute_DAG_4(A_i, N_i, From_i, X_io)
ppSubstitute_DAG_8(A_i, N_i, From_i, X_io)
ppSubstitute_DAG_10(A_i, N_i, From_i, X_io)
ppSubstitute_DAG_16(A_i, N_i, From_i, X_io)
ppSubstitute_DAG_Z4(A_i, N_i, From_i, X_io)
ppSubstitute_DAG_Z8(A_i, N_i, From_i, X_io)
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ppSubstitute_DAG_Z10(A_i, N_i, From_i, X_io)
ppSubstitute_DAG_Z16(A_i, N_i, From_i, X_io)

where

1. The argument A_i, array whose kind must be consistent with subroutine name convention, is 
the profile of matrix [A] that inputs the result from decomposition.

2. The argument N_i, an INTEGER(4) variable, is the order of matrix [A].
3. The argument From_i, an INTEGER(4) array having N_i elements, inputs the pivoting rows 

from decomposition.
4. The argument X_io, array whose kind must be consistent with subroutine name convention, 

inputs the right side vector, and returns the solution.

14.4  Fortran Syntax for Subroutine ppSolution

The subroutines first decompose matrix [A] into the product of [L][U] with partial pivoting, 
and then perform forward and backward substitutions. Solve [A]{X}={B} in a single call. Syntax 
is as follows:

ppSolution_DAG_4(A_io, N_i, RowOrder_io, X_io, NoGood_o)
ppSolution_DAG_8(A_io, N_i, RowOrder_io, X_io, NoGood_o)
ppSolution_DAG_10(A_io, N_i, RowOrder_io, X_io, NoGood_o)
ppSolution_DAG_16(A_io, N_i, RowOrder_io, X_io, NoGood_o)
ppSolution_DAG_Z4(A_io, N_i, RowOrder_io, X_io, NoGood_o)
ppSolution_DAG_Z8(A_io, N_i, RowOrder_io, X_io, NoGood_o)
ppSolution_DAG_Z10(A_io, N_i, RowOrder_io, X_io, NoGood_o)
ppSolution_DAG_Z16(A_io, N_i, RowOrder_io, X_io, NoGood_o)

where

1. The argument A_io, array whose kind must be consistent with subroutine name convention, is 
the profile of matrix [A], that inputs the original matrix and returns the decomposed result if 
the variable NoGood_o is false. For the definition of profile, please see section 14.5.

2. The argument N_i, an INTEGER(4) variable, is the order of matrix [A].
3. The argument RowOrder_io, an INTEGER(4) array having N_i elements, enters a sequence of 

consecutive numbers from one to N_i and returns the pivoting rows if NoGood_o is false.
4. The argument X_io, array whose kind must be consistent with subroutine name convention, 

inputs the right side vector, and returns the solution if NoGood_o is false.
5. The argument NoGood_o, a LOGICAL(4) variable, is a flag that indicates if the input system 

is suitable for the subroutine. If NoGood_o=.True., the input system cannot be solved by the 
subroutine and there is no output returned; otherwise the profile A_io returns the decomposed 
matrices  [L]  and  [U],  and  vector  X_io  returns  the  solution.  For  the  situation  where 
NoGood_o=.True., please see section 14.7.

14.5  Profile

Profile for a dense and asymmetric matrix is the simplest as:
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Data  storage  scheme  for  a  dense  and  asymmetric  matrix  must  be  declared  in  Fortran 
program, for example:

REAL (4) :: A(N,N)

where variable A here is a single precision profile for matrix [A], and N is the matrix order. For 
other kinds of variable, profile must be properly declared.

14.7  Failure of Calling Request

If a calling request fails, solving procedure cannot find a pivoting row such that the absolute 
value of diagonal element is not negligible compared to unity.

14.8  Fortran Example

For a given system [A]{X}={B}, the left side matrix [A] and the right side vector {B} are 
defined as follows:

in which the order N=7. A Fortran program for decomposition and substitution is as follows. 
Subroutines  “Input”  and  “Output”  have  data  storage  scheme.  Subroutine 
“ppDecompose_DAG_4”  decomposes  matrix  [A]  with  partial  pivoting,  and  subroutine 
“ppSubstitute_DAG_4” performs forward and backward substitutions.

!  *** Example program ***
!  define variables where the length of A is determined by equation (14.2)
!
        PARAMETER (N=7)
        REAL*4 A(N,N),X(N)
        LOGICAL*4 NoGood
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        INTEGER*4 RowOrder(N)
        DATA X/21.0,141.0,2.0,9.0,333.0,1.0,3.0/
!
!  input matrix [A]
!
        CALL Input(A,N,RowOrder)
!
!  decompose in parallel with partial pivoting
!
        CALL ppDecompose_DAG_4(A,N,RowOrder,NoGood)
!
!  stop if NoGood=.True.
!
        IF(NoGood) STOP 'Cannot be decomposed'
!
!  perform substitutions in parallel
!
        CALL ppSubstitute_DAG_4(A,N,RowOrder,X)
!
!  output decomposed matrix
!
        CALL Output(A,N)
!
!  output the solution
!
        Write(*,'('' Solution is as:'')')
        Write(*,*) X
!
!  laipe done
!
        call laipeDone
!
        STOP
        END
        SUBROUTINE Input(A,N,RowOrder)
!
!
!  routine to demonstrate an application of data storage scheme
!  (A)FORTRAN CALL: CALL Input(A,N,RowOrder)
!     1.A: <R4> profile of matrix [A], dimension(N,N)
!     2.N: <I4> the order of matrix [A]
!     3.RowOrder: <I4> return a sequence of  consecutive numbers from one to N, dimension(N)
!
!  dummy arguments
!
        INTEGER*4 N
        REAL*4 A(N,N),RowOrder(N)
!
!  set consecutive numbers
!
        DO I=1,N
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              RowOrder(I)=I
        END DO
!
!  first column
!
        A(1,1)= 1.0
        A(2,1)= 4.0
        A(3,1)= 2.0
        A(4,1)= 3.0
        A(5,1)=12.0
        A(6,1)= 4.0
        A(7,1)= 2.0
!
!  second column
!
        A(1,2)= 2.0
        A(2,2)= 5.0
        A(3,2)=29.0
        A(4,2)= 9.0
        A(5,2)=23.0
        A(6,2)= 2.0
        A(7,2)=27.0
!
!  third column
!
        A(1,3)=13.0
        A(2,3)= 3.0
        A(3,3)= 4.0
        A(4,3)=34.0
        A(5,3)= 3.0
        A(6,3)=22.0
        A(7,3)= 3.0
!
!  fourth column
!
        A(1,4)=17.0
        A(2,4)= 5.0
        A(3,4)= 7.0
        A(4,4)= 8.0
        A(5,4)=23.0
        A(6,4)=11.0
        A(7,4)=49.0
!
!  fifth column
!
        A(1,5)=32.0
        A(2,5)= 0.0
        A(3,5)=11.0
        A(4,5)=33.0
        A(5,5)=45.0
        A(6,5)= 7.0
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        A(7,5)=33.0
!
!  sixth column
!
        A(1,6)=47.0
        A(2,6)= 0.0
        A(3,6)= 5.0
        A(4,6)=14.0
        A(5,6)=-1.0
        A(6,6)= 2.0
        A(7,6)=12.0
!
!  seventh column
!
        A(1,7)= 6.0
        A(2,7)= 6.0
        A(3,7)= 4.0
        A(4,7)= 3.0
        A(5,7)= 2.0
        A(6,7)= 1.0
        A(7,7)= 9.0
!
        RETURN
        END
        SUBROUTINE Output(A,N)
!
!
!  routine to output the decomposed matrix by data storage scheme
!  (A)FORTRAN CALL: CALL Output(A,N)
!     1.A: <R4> profile of matrix [A], dimension(*)
!     2.N: <I4> order of matrix [A]
!
!  dummy arguments
!
        INTEGER*4 N
        REAL*4 A(N,N)
!
!  local variables
!
        INTEGER*4 Column,Row
!
!  output the coefficients on non-zero fill-ins
!
        WRITE(*,'('' Row  Column  Coefficient'')')
        DO Column=1,N
              DO Row=1,N
                    WRITE(*,'(I4,I6,F9.3)') Row,Column,A(Row,Column)
              END DO
        END DO
!
        RETURN
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Chapter 15.   Dense and Asymmetric Solvers with Full Pivoting

15.1  Purpose

This chapter has subroutines for the solution of [A]{X}={B} with full pivoting where the left 
side matrix [A] is dense and asymmetric. There is no consideration of definiteness of matrix [A]. 
The non-zero fill-ins of matrix [A] have a simple shape, for example, as:

where the symbol "*" indicates non-zero fill-ins. Three types of subroutine are introduced in this 
chapter, which perform the following functions:

1. Decompose matrix [A] into the product of [L][U] where matrix [L] is the lower triangular 
matrix and matrix [U] is the upper triangular matrix.

2. Perform forward and backward substitutions.
3. Solve [A]{X}={B} in a single call.

Decomposition  and  substitution  must  be  called  in  order,  and  work  together  as  a  pair. 
Subroutines are as follows:

fpDecompose_DAG_4
fpDecompose_DAG_8
fpDecompose_DAG_10
fpDecompose_DAG_16
fpDecompose_DAG_Z4
fpDecompose_DAG_Z8
fpDecompose_DAG_Z10
fpDecompose_DAG_Z16

fpSubstitute_DAG_4
fpSubstitute_DAG_8
fpSubstitute_DAG_10
fpSubstitute_DAG_16
fpSubstitute_DAG_Z4
fpSubstitute_DAG_Z8
fpSubstitute_DAG_Z10
fpSubstitute_DAG_Z16
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fpSolution_DAG_4
fpSolution_DAG_8
fpSolution_DAG_10
fpSolution_DAG_16
fpSolution_DAG_Z4
fpSolution_DAG_Z8
fpSolution_DAG_Z10
fpSolution_DAG_Z16

15.2  Fortran Syntax for Subroutine fpDecompose

This subroutine decomposes matrix [A] into [A]=[L][U] with full  pivoting. Syntax is as 
follows:

fpDecompose_DAG_4(A_io,N_i,RowOrder_io,ColumnOrder_io,NoGood_o)
fpDecompose_DAG_8(A_io,N_i,RowOrder_io,ColumnOrder_io,NoGood_o)
fpDecompose_DAG_10(A_io,N_i,RowOrder_io,ColumnOrder_io,NoGood_o)
fpDecompose_DAG_16(A_io,N_i,RowOrder_io,ColumnOrder_io,NoGood_o)
fpDecompose_DAG_Z4(A_io,N_i,RowOrder_io,ColumnOrder_io,NoGood_o)
fpDecompose_DAG_Z8(A_io,N_i,RowOrder_io,ColumnOrder_io,NoGood_o)
fpDecompose_DAG_Z10(A_io,N_i,RowOrder_io,ColumnOrder_io,NoGood_o)
fpDecompose_DAG_Z16(A_io,N_i,RowOrder_io,ColumnOrder_io,NoGood_o)

where

1. The argument A_io, array whose kind must be consistent with subroutine name convention, is 
the profile of matrix [A] that inputs the original matrix and returns the result if the variable 
NoGood_o is false. For the definition of profile, please see section 15.5.

2. The argument N_i, an INTEGER(4) variable, is the order of matrix [A].
3. The argument RowOrder_io, an INTEGER(4) array having N_i elements, enters a sequence of 

consecutive numbers from one to N_i and returns the pivoting rows if NoGood_o is false.
4. The  argument  ColumnOrder_io,  an  INTEGER(4)  array  having  N_i  elements,  enters  a 

sequence  of  consecutive  numbers  from  one  to  N_i  and  returns  the  pivoting  columns  if 
NoGood_o is false.

5. The argument NoGood_o, a LOGICAL(4) variable, is a flag that indicates if the input matrix 
[A]  is  suitable  for  the  subroutine.  If  NoGood_o=.True.,  the  input  matrix  [A]  cannot  be 
decomposed  and  there  is  no  output  returned;  otherwise  the  profile  A_io  returns  the 
decomposed  matrices  [L]  and  [U].  For  the  situation  where  NoGood_o=.True.,  please  see 
section 15.7.

15.3  Fortran Syntax for Subroutine fpSubstitute

This subroutine performs forward and backward substitutions. Syntax is as follows:

fpSubstitute_DAG_4(A_i, N_i, RowOrder_i, ColumnOrder_i, X_io)
fpSubstitute_DAG_8(A_i, N_i, RowOrder_i, ColumnOrder_i, X_io)
fpSubstitute_DAG_10(A_i, N_i, RowOrder_i, ColumnOrder_i, X_io)
fpSubstitute_DAG_16(A_i, N_i, RowOrder_i, ColumnOrder_i, X_io)
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fpSubstitute_DAG_Z4(A_i, N_i, RowOrder_i, ColumnOrder_i, X_io)
fpSubstitute_DAG_Z8(A_i, N_i, RowOrder_i, ColumnOrder_i, X_io)
fpSubstitute_DAG_Z10(A_i, N_i, RowOrder_i, ColumnOrder_i, X_io)
fpSubstitute_DAG_Z16(A_i, N_i, RowOrder_i, ColumnOrder_i, X_io)

where

1. The argument A_i, array which type must be consistent with subroutine name convention, is 
the profile of matrix [A] that inputs the result from decomposition.

2. The argument N_i, an INTEGER(4) variable, is the order of matrix [A].
3. The argument RowOrder_i, an INTEGER(4) array having N_i elements, inputs the pivoting 

rows from decomposition.
4. The  argument  ColumnOrder_i,  an  INTEGER(4)  array  having  N_i  elements,  inputs  the 

pivoting columns from decomposition.
5. The argument X_io, array which type must be consistent with subroutine name convention, 

inputs the right side vector, and returns the solution.

15.4  Fortran Syntax for Subroutine fpSolution

The following subroutines first decompose matrix [A] into the product of [L][U] with full 
pivoting, and then perform forward and backward substitutions. Solve [A]{X}={B} in a single 
call. Syntax is as follows:

fpSolution_DAG_4(A_io, N_i, RowOrder_io, ColumnOrder_io, X_io, NoGood_o)
fpSolution_DAG_8(A_io, N_i, RowOrder_io, ColumnOrder_io, X_io, NoGood_o)
fpSolution_DAG_10(A_io, N_i, RowOrder_io, ColumnOrder_io, X_io, NoGood_o)
fpSolution_DAG_16(A_io, N_i, RowOrder_io, ColumnOrder_io, X_io, NoGood_o)
fpSolution_DAG_Z4(A_io, N_i, RowOrder_io, ColumnOrder_io, X_io, NoGood_o)
fpSolution_DAG_Z8(A_io, N_i, RowOrder_io, ColumnOrder_io, X_io, NoGood_o)
fpSolution_DAG_Z10(A_io, N_i, RowOrder_io, ColumnOrder_io, X_io, NoGood_o)
fpSolution_DAG_Z16(A_io, N_i, RowOrder_io, ColumnOrder_io, X_io, NoGood_o)

where

1. The argument A_io, array which type must be consistent with subroutine name convention, is 
the profile of matrix [A], that inputs the original matrix and returns the decomposed result if 
the variable NoGood_o is false. For the definition of profile, please see section 15.5.

2. The argument N_i, an INTEGER(4) variable, is the order of matrix [A].
3. The argument RowOrder_io, an INTEGER(4) array having N_i elements, enters a sequence of 

consecutive numbers from one to N_i and returns the pivoting rows if NoGood_o is false.
4. The  argument  ColumnOrder_io,  an  INTEGER(4)  array  having  N_i  elements,  enters  a 

sequence  of  consecutive  numbers  from  one  to  N_i  and  returns  the  pivoting  columns  if 
NoGood_o is false.

5. The argument X_io, array which type must be consistent with subroutine name convention, 
inputs the right side vector, and returns the solution if NoGood_o is false.

6. The argument NoGood_o, a LOGICAL(4) variable, is a flag that indicates if the input system 
is suitable for the subroutine If NoGood_o=.True., the input system cannot be solved by the 
subroutine and there is no output returned; otherwise the profile A_io returns the decomposed 
matrices  [L]  and  [U],  and  vector  X_io  returns  the  solution.  For  the  situation  where 
NoGood_o=.True., please see section 15.7.
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15.5  Profile

Profile for a dense and asymmetric matrix is the simplest one as:

where the symbol "*" represents non-zero fill-ins. Total length of profile is determined as

profile size = N * N (15.2)

where N is the matrix order.

15.6   Data Storage Scheme

Data  storage  scheme  for  a  dense  and  asymmetric  matrix  must  be  declared  in  Fortran 
program, for example:

REAL (4) :: A(N,N)

where variable A here is a single precision profile for matrix [A], and N is the matrix order. For 
other kinds of variable, profile must be properly declared. Then, the coefficient  Aij of matrix 
[A] is programmed in a Fortran program as A(I,J).

15.7  Failure of Calling Request

If a calling request fails, solving procedure cannot find a pivoting row such that the absolute 
value of diagonal element is not negligible compared to unity.

15.8  Fortran Example

For a given system [A]{X}={B}, the left side matrix [A] and the right side vector {B} are 
defined as:
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in which the order N=7. A Fortran program for decomposition and substitution is as follows. 
Subroutines  “Input”  and  “Output”  have  data  storage  scheme.  Subroutine 
“fpDecompose_DAG_8”  decomposes  matrix  [A]  with  full  pivoting,  and  subroutine 
“fpSubstitute_DAG_8” performs forward and backward substitutions.

!  *** Example program ***
!  define variables where the length of A is determined by equation (15.2)
!
        PARAMETER (N=7)
        REAL*4 A(N,N),X(N)
        LOGICAL*4 NoGood
        INTEGER*4 RowOrder(N),ColumnOrder(N)
        DATA X/21.0,141.0,2.0,9.0,333.0,1.0,3.0/
!
!  input matrix [A]
!
        CALL Input(A,N,RowOrder,ColumnOrder)
!
!  decompose in parallel with full pivoting
!
        CALL fpDecompose_DAG_4(A,N,RowOrder, ColumnOrder, NoGood)
!
!  stop if NoGood=.True.
!
        IF(NoGood) STOP 'Cannot be decomposed'
!
!  perform substitutions in parallel
!
        CALL fpSubstitute_DAG_4(A,N,RowOrder,ColumnOrder,X)
!
!  output decomposed matrix
!
        CALL Output(A,N)
!
!  output the solution
!
        Write(*,'('' Solution is as:'')')
        Write(*,*) X
!
!  laipe done
!
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        call laipeDone
!
        STOP
        END
        SUBROUTINE Input(A,N,RowOrder,ColumnOrder)
!
!
!  routine to demonstrate an application of data storage scheme
!  (A)FORTRAN CALL: CALL Input(A,N,RowOrder,ColumnOrder)
!     1.A: <R4> profile of matrix [A], dimension(N,N)
!     2.N: <I4> the order of matrix [A]
!     3.RowOrder: <I4> return consecutive numbers from one to N
!     4.ColumnOrder: <I4> return consecutive numbers from one to N
!
!  dummy arguments
!
        INTEGER*4 N
        REAL*4 A(N,N),RowOrder(M),ColumnOrder(N)
!
! set consecutive numbers
!
        DO I=1,N
              RowOrder(I)=I
        END DO
        DO I=1,N
              ColumnOrder(I)=I
        END DO
!
!  first column
!
        A(1,1)= 1.0
        A(2,1)= 4.0
        A(3,1)= 2.0
        A(4,1)= 3.0
        A(5,1)=12.0
        A(6,1)= 4.0
        A(7,1)= 2.0
!
!  second column
!
        A(1,2)= 2.0
        A(2,2)= 5.0
        A(3,2)=29.0
        A(4,2)= 9.0
        A(5,2)=23.0
        A(6,2)= 2.0
        A(7,2)=27.0
!
!  third column
!
        A(1,3)=13.0
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        A(2,3)= 3.0
        A(3,3)= 4.0
        A(4,3)=34.0
        A(5,3)= 3.0
        A(6,3)=22.0
        A(7,3)= 3.0
!
!  fourth column
!
        A(1,4)=17.0
        A(2,4)= 5.0
        A(3,4)= 7.0
        A(4,4)= 8.0
        A(5,4)=23.0
        A(6,4)=11.0
        A(7,4)=49.0
!
!  fifth column
!
        A(1,5)=32.0
        A(2,5)= 0.0
        A(3,5)=11.0
        A(4,5)=33.0
        A(5,5)=45.0
        A(6,5)= 7.0
        A(7,5)=33.0
!
!  sixth column
!
        A(1,6)=47.0
        A(2,6)= 0.0
        A(3,6)= 5.0
        A(4,6)=14.0
        A(5,6)=-1.0
        A(6,6)= 2.0
        A(7,6)=12.0
!
!  seventh column
!
        A(1,7)=6.0
        A(2,7)=6.0
        A(3,7)=4.0
        A(4,7)=3.0
        A(5,7)=2.0
        A(6,7)=1.0
        A(7,7)=9.0
!
        RETURN
        END
        SUBROUTINE Output(A,N)
!
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!
!  routine to output the decomposed matrix by data storage scheme
!  (A)FORTRAN CALL: CALL Output(A,N)
!     1.A: <R4> profile of matrix [A], dimension(*)
!     2.N: <I4> order of matrix [A]
!
!  dummy arguments
!
        INTEGER*4 N
        REAL*4 A(N,N)
!
!  local variables
!
        INTEGER*4 Column,Row
!
!  output the coefficients on non-zero fill-ins
!
        WRITE(*,'('' Row  Column  Coefficient'')')
        DO Column=1,N
               DO Row=1,N
                     WRITE(*,'(I4,I6,F9.3)') Row,Column,A(Row,Column)
               END DO
        END DO
!
        RETURN
        END
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Appendix A. Auxiliary Subroutine for Releasing
System Resource

LAIPE  is  programmed  in  MTASK  that  allocates  some  system  resource.  The  system 
resource  allocated  by  MTASK  may  be  automatically  released  when  the  system resource  is 
unnecessary any more. LAIPE provides an auxiliary subroutine to immediately release system 
resource when LAIPE is no longer required in an application.

A.1 Fortran Syntax for Subroutine laipeDone

This subroutine has no arguments. Fortran syntax is as follow:

        CALL laipeDone
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Appendix B. Auxiliary Subroutines for Task
Manipulations

This chapter has subroutines to set tasks for LAIPE solvers. Setting tasks for LAIPE solver 
is always necessary when monitoring the performance. That may allow the executing time to be 
collected with respect to a specified number of tasks. Then, speedup is obtained. This shows a 
situation to set tasks for LAIPE solver.

Another  situation  to  set  tasks  for  LAIPE  solvers  is  to  reduce  overhead  for  small-size 
problems.  By  default,  LAIPE  solvers  use  all  the  available  processors  for  computing.  For 
example,  if  there  are  4  processors  available,  LAIPE solvers  automatically  start  4  tasks  for 
computing. It is not worth distributing small system onto multiprocessors. When applying LAIPE 
solvers to small problems, i.e.  of order 50x50, set a single task for the solution.  On a single 
processor  computer,  the  default  task  is  one.  This  chapter  has  three  subroutines  for  task 
manipulations, which are as:

GetTasks
SetTasks
ResetTasks

B.1 Fortran Syntax for Subroutine GetTasks

This subroutine gets the number of tasks that are ready for LAIPE solvers. Fortran syntax is 
as follow:

        CALL GetTasks(tasks_o)

where

1.  The argument tasks_o, an INTEGER*4 variable, returns the number of tasks available for 
LAIPE solvers.

B.2  Fortran Syntax for Subroutine SetTasks

This subroutine sets tasks for LAIPE solvers. Fortran syntax is as follow:

        CALL SetTasks(tasks_i)

where

1. The  argument  tasks_i,  an  INTEGER*4  variable,  inputs  the  number  of  tasks  for  LAIPE 
solvers.  The  input  tasks_i  cannot  be  greater  than  the  number  of  available  processors.  By 
default, the parameter is the number of processors available.

B.3 Fortran Syntax for Subroutine ResetTasks
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This subroutine resets tasks to be the number of available processors. If an application never 
set tasks, it  is unnecessary to call  this  subroutine to reset the parameter.  Fortran syntax is as 
follow:

                CALL ResetTasks

There is no argument required in the subroutine.
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