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Chapter 1.  Introduction

JCL is a Fortran library for reducing bandwidth and profile of sparse matrix. JCL is 

also callable by C language. JCL applies the algorithm, “Algorithms for reducing the 

bandwidth  and  profile  of  a  sparse  matrix”,  authored  by  J.-C.  Luo,  published  in 

computers & structures, vol. 44, no. 3, 1992.  The algorithm has been proved to be the 

most reliable.

Most scientific and engineering problems are formulated into a symmetric system of 

linear/non-linear equations, e. g.,  [A]{X }={B} . Because of piecewise approximation, 

the symmetric matrix [A] may lead to a sparse figure, e. g.,

[
° °

° ° ° °
° ° °

° °
° ° °

° ° °
° °

° ° °
] (1.1)

where  ° represents a non-zero fill-in,  and other blanks represent zero coefficient.  An 

arbitrary symmetric sparse matrix, e. g., the above example, cannot take advantage of 

sparse solvers. JCL renumbers the unknowns, e. g., rearrangement of rows and columns, 

such that non-zero fill-ins are around the diagonal as:

[
° ° °
° ° °
° ° ° °

° ° °
° ° °

° °
° °
° °

] (1.2)

The sparse matrix,  as shown in Eq. (1.2),  then can be solved by constant  bandwidth 

solvers or variable bandwidth solvers. Variable bandwidth solver is also called skyline 
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solver.

The  cost  to  solve  [A]{X}={B}  depends  on  bandwidth  (or  half  bandwidth)  and 

profile. Half bandwidth is defined as the maximal ∣i− j∣ where i  and j  are subscripts 

of non-zero fill-in  Aij or  A ji , and profile is defined as ∑i=1

n
max of ∣i− j∣ where i and 

j are subscripts of non-zero fill-in  A ji . Renumbering can significantly reduce solution 

costs. 

JCL provides an efficient and reliable way to reduce bandwidth and profile of a 

sparse matrix. JCL is thread-safe, and can be called simultaneously in a  program.

1.1  Non-zero fill-ins and Non-zero coefficients

Non-zero fill-in is different from non-zero coefficient. For the following example,

[A]=[1.0 2.0
3.0 4.0 5.0

5.0 6.0 7.0
7.0 8.0 9.0

9.0 1.0
]

The  matrix  has  13  non-zero  coefficients.  The  non-zero  coefficients  are  asymmetric 

because of A12≠A21 . Non-zero fill-in is an entry with non-zero coefficient. The non-

zero fill-ins of matrix [A] are represented as follows:

[° °
° ° °

° ° °
° ° °

° °
]

In the above example, non-zero coefficients are asymmetric, but the non-zero fill-ins are 

symmetric. Once non-zero fill-ins are symmetric, JCL is applicable.
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Chapter  2.  Calling Syntax

JCL is programmed in Fortran. The entry subroutine to JCL is defined as follows:
jcl(nas,n,adj,output,work,limit,flag)

where

1. nas: 4-byte integer array, dimension(n), input the number of vertices adjacent 

to each vertex.  Concept  of adjacent vertices comes from graph theory by 

which the renumbering algorithms are developed. In finite element, adjacent 

vertices are similar to connected degrees of freedom. In algebra,  adjacent 

vertices are similar to coupled unknowns.

2. n: a 4-byte integer, input the number of unknowns, or system size, or order.

3. adj: 4-byte integer array, dimension(sum of values in array  nas), input the 

vertices adjacent to each vertex. E. g., vertices adjacent to the first vertex, and 

then vertices adjacent to the second vertex, and so on. The required length of 

array adj is equal to the sum of each value in array nas.

4. output:  4-byte  integer  array,  dimension(n),  returns  the  new  number  of 

vertices.

5. work: 4-byte integer array, dimension(limit), is a working array. This array 

should have a sufficient space.

6. limit:  a 4-byte integer, input the dimension of array  work.  The dimension 

cannot  be  determined in  advance  because  of  the  nature  of  algorithm.  An 

estimation is as:
13*n+(sum of values in array nas)

JCL is a memory eater, but is not a CPU time eater. Computer memory is a 

not an issue on modern computer. The estimation can fit for most problems.

7. flag: 4-byte integer, returns the status

=    1 , successful entry. The array output has new number of

vertices.

=    0 , the limit of array work is insufficient. User can re-run JCL

with a big dimension of work.
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= −i , incorrect adjacent vertices, where i is an integer value.

User should check vertices adjacent to the vertex “i” and

vertices adjacent to adjacent vertices of vertex “i”.

2.1  A Fortran Example

Let  us consider  the  8×8 example as  shown in Eq.  (1.1).   The  information of 

adjacent vertices can be summarized as:

Vertex Adjacent Vertices Number of 
Adjacent Vertices

1 5 1
2 3,6,8 3
3 2,5 2
4 7 1
5 1,3 2
6 2,8 2
7 4 1
8 2,6 2

The following is a Fortran example showing how to call JCL.

        integer (4), parameter :: n = 8
        integer (4) :: nas(n)
        integer (4) :: output(n)
        integer (4) :: adj(14) !! why 14?
                               !! see program segment of
                               !! “number of adjacent vertices”
        integer (4), parameter :: limit = 13*n+14
                                  !! JCL is memory eater
        integer (4) :: work(limit)
        integer (4) :: flag
     
     !
     !  number of adjacent vertices
     !  by the 3rd column of above table
     !
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        nas(1) = 1
        nas(2) = 3
        nas(3) = 2
        nas(4) = 1
        nas(5) = 2
        nas(6) = 2
        nas(7) = 1
        nas(8) = 2  !! sum of values = 14
                    !! adj is declared as dimension(14)

     !
     !  adjacent vertices
     !  by the 2nd column of the above table
     !
        !! vertex adjacent to vertex 1
        adj(1) = 5

        !! vertices adjacent to vertex 2
        adj(2) = 3
        adj(3) = 6
        adj(4) = 8

        !! vertices adjacent to vertex 3
        adj(5) = 2
        adj(6) = 5

        !! vertex adjacent to vertex 4
        adj(7) = 7

        !! vertices adjacent to vertex 5
        adj(8) = 1
        adj(9) = 3

        !! vertices adjacent to vertex 6
        adj(10) = 2
        adj(11) = 8

        !! vertex adjacent to vertex 7
        adj(12) = 4

        !! vertices adjacent to vertex 8
        adj(13) = 2
        adj(14) = 6

     !
     !  renumber by JCL
     !
        call jcl(nas,n,adj,output,work,limit,flag)

     !
     !  output the new number
     !
        write(*,*) "flag",flag
        if(flag.eq.1) write(*,*) output
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     !
     !  end of program
     !
        end

The output of new order is:   6    3    4    8    5    2    7    1. That 

means the vertex 1 should be numbered as 6, and vertex 2 should be numbered as 3, and 

so on. By the new order, user can copy rows of the original matrix in Eq. (1.1) to a new 

matrix. For example, user can copy row 1 to row 6 of new matrix, and similarly copy row 

2 to row 3, and so on. The row arrangement gets the following sparse figure:

[
° ° °
° ° °
° ° ° °
° ° °

° ° °
° °

° °
° °

] (1.3)

Then, by the new order (6  3  4  8  5  2  7  1), user can copy columns in Eq. (1.3) to a new 

matrix.  For example,  copy column 1 to column 6 of new matrix,  and similarly copy 

column 2 to column 3, and so on. Arrangement of columns of the matrix in Eq. (1.3) gets 

the perfect sparse figure as shown in Eq. (1.2).

The above example shows that bandwidth and profile of a sparse matrix are reduced 

by rearranging rows and columns of matrix [A]. Renumbering after the matrix [A] is 

determined  is  less  efficient  and  less  popular.  In  most  scientific  and  engineering 

applications,  vertices  are  renumbered before a  sparse matrix  is  determined.  The next 

Chapter will illustrate how to renumber vertices without matrix [A].

2.2  A Bad Example

Let us use the previous 8×8 example to illustrate how to find error in input data. 
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The information of adjacent vertices is as follows:

Vertex Adjacent Vertices Number of 
Adjacent Vertices

1 5 1
2 3,6,8 3
3 2,5 2
4 7 1
5 1,3 2
6 2,8 2
7 4 1
8 2,6 2

The vertex 6 has adjacent vertices 2 and 8.  Here on purpose input incorrect adjacent 

vertices 3 and 8. The example program is as follow:

        integer (4), parameter :: n = 8
        integer (4) :: nas(n)
        integer (4) :: output(n)
        integer (4) :: adj(14)
        integer (4), parameter :: limit = 13*n+14
        integer (4) :: work(limit)
        integer (4) :: flag
     
     !
     !  number of adjacent vertices
     !
        nas(1) = 1
        nas(2) = 3
        nas(3) = 2
        nas(4) = 1
        nas(5) = 2
        nas(6) = 2
        nas(7) = 1
        nas(8) = 2

     !
     !  adjacent vertices
     !
        !! vertex adjacent to vertex 1
        adj(1) = 5

        !! vertices adjacent to vertex 2
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        adj(2) = 3
        adj(3) = 6
        adj(4) = 8

        !! vertices adjacent to vertex 3
        adj(5) = 2
        adj(6) = 5

        !! vertex adjacent to vertex 4
        adj(7) = 7

        !! vertices adjacent to vertex 5
        adj(8) = 1
        adj(9) = 3

        !! vertices adjacent to vertex 6
        adj(10) = 3 !! (error: It should be 2)
        adj(11) = 8

        !! vertex adjacent to vertex 7
        adj(12) = 4

        !! vertices adjacent to vertex 8
        adj(13) = 2
        adj(14) = 6

     !
     !  renumber by JCL
     !
        call jcl(nas,n,adj,output,work,limit,flag)

     !
     !  output the new number
     !
        write(*,*) "flag",flag
        if(flag.eq.1) write(*,*) output

     !
     !  end of program
     !
        end

The output flag is -2. That gives a hint that an error may happen to the vertices adjacent 

to vertex 2 or happens to the vertices adjacent to vertices adjacent to vertex 2. User needs 

to check the following:

1) First, check vertices adjacent to vertex 2. Vertices adjacent to vertex 2 includes 
3, 6, and 8. Data input to JCL is 3, 6, and 8. The input is correct. Then, check 
vertices adjacent to 3, 6, and 8.

2) Vertices adjacent to vertex 3 are 2 and 5. Data input to JCL is 2 and 5. It is 
correct.
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3) Vertices adjacent to vertex 6 are 2 and 8. However, Data input to JCL is 3 and 8. 
We find the error.

The return flag gives a hint to find an input error.
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Chapter 3.  Renumbering Before the Determination of
Sparse Matrix

This Chapter illustrates how to renumber vertices before the determination of matrix 

[A]. Renumbering is important in scientific and engineering computing. Most scientific 

and  engineering  problems  can  be  formulated  into  a  system  of  equations,  i.e., 

[A]{X }={B} where  matrix  [A ] is  symmetric  and  sparse.  The  unknowns  can  be 

renumbered before the determination of matrix [A] . For example, let us consider the 

engineering problem, as shown in Figure 1.

It is a cable. The example solves horizontal and vertical displacements at five joints, 

each of which has horizontal and vertical displacements. Each displacement is equivalent 

to a vertex in renumbering algorithms. This example has a total of 10 vertices, and are 

initially  labeled from 1 to  10 in  Figure 1.  We won't  use the initial  number  to  solve 

displacements,  but  use  the  initial  number  to  define  adjacent  vertices.  The  adjacent 

vertices are required by JCL. By Figure 1, we can define the adjacent vertices as:

Vertex Adjacent Vertices Number of  
Adjacent Vertices

1 2,6,7 3
2 1,3,6,7,8 5
3 2,4,7,8,9 5
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Vertex Adjacent Vertices Number of  
Adjacent Vertices

4 3,5,8,9,10 5
5 4,9,10 3
6 1,2,7 3
7 1,2,3,6,8 5
8 2,3,4,7,9 5
9 3,4,5,8,10 5

10 4,5,9 3

A vertex  is  equivalent  to  a  degree  of  freedom (hereinafter  “dof”)  in  finite  element 

method, and adjacent vertices are equivalent to coupled degrees of freedom. If user has a 

background with finite element method, it is easy to verify the coupled dof with respect to 

each dof can be summarized as:

dof coupled dof
1 2,6,7
2 1,3,6,7,8
3 2,4,7,8,9
4 3,5,8,9,10
5 4,9,10
6 1,2,7
7 1,2,3,6,8
8 2,3,4,7,9
9 3,4,5,8,10

10 4,5,9

Adjacent  vertices  and  coupled  dof  identify  connectivity.  This  manual  uses  the  term 

“adjacent vertices” for illustration. Applying the above adjacent vertices to JCL, the new 

number of vertices is as:
10  8  6  4  2  9  7  5  3  1

E. g., replace “number 1” in Figure 1 with “number 10”, and replace “number 2” with 
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“number 8”, and so on. The new number is labeled as:

We apply the new number labeled in Figure 2 to solve displacements, e.g.,  by finite 

element method. The connectivity in Figure 2 shows the following:

1) At vertex 1, vertices 1, 2, 3, and 4 are connected (or coupled). That means, on the 

first row of [A], columns 1, 2, 3, and 4 have non-zero fill-ins.

2) At vertex 2, vertices 1, 2, 3, and 4 are connected. On the second row of [A], columns 

1, 2, 3, and 4 have non-zero fill-ins.

3) At vertex 3, vertices 1, 2, 3, 4, 5, and 6 are connected. One the third row of [A], 

columns 1, 2, 3, 4, 5, and 6 have non-zero fill-ins.

4) .... and so on.

The new number of vertices leads the following matrix [A] :

[
A11 A12 A13 A14

A21 A22 A23 A24

A31 A32 A33 A34 A35 A36

A41 A42 A43 A44 A45 A46

A53 A54 A55 A56 A57 A58

A63 A64 A65 A66 A67 A68

A75 A76 A77 A78 A79 A7,10

A85 A86 A87 A88 A89 A8,10

A97 A98 A99 A9,10

A10,7 A10,8 A10,9 A10,10

]
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User can use the new numbers to calculate matrix [A] without a rearrangement of rows 

and columns. The procedure to renumber vertices can be summarized as follows:

1) Arbitrarily number the vertices

2) Define adjacent vertices by the initial number

3) Apply JCL to get new number.
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Chapter 4.  Renumbering Asymmetric Sparse Matrix

When renumbering a  matrix with asymmetric  non-zero fill-ins,  it  is  necessary to 

expand the asymmetric figure into a symmetric figure. For example, the following has an 

asymmetric non-zero fill-ins:

[° ° °
°
° ° °

° ° °
° °

]
The asymmetric figure needs to be expanded into a symmetric figure by copying the 

transpose of upper triangular part into the lower triangular part, and copying the transpose 

of lower triangular part into the upper triangular part. The expanded symmetric figure 

becomes:

[° ° ° °
° ° °

° ° °
° ° ° °
° ° °

]
Then, JCL renumbers the expanded sparse matrix that has a symmetric non-zero fill-ins.
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CHAPTER 5.  Data Storage Schemes

Sparse matrix can be efficiently handled by a proper data storage schemes. Among 

computer languages, Fortran is most suitable for sparse matrix operations. This chapter 

will  introduces  data  storage  schemes  for  constant-bandwidth  and  variable-bandwidth 

sparse  symmetric  matrices.  For  sparse  asymmetric  matrices,  please  refer  to  LAIPE 

manual.

5.1  Constant Bandwidth Sparse Symmetric Matrix

The data storage scheme is applicable in subroutine (or function). Sparse matrix is 

passed as a dummy argument. Since it is symmetric, we handle the lower triangular part. 

For example,

[
1
4 25 sym.
2 29 88

9 34 89
3 23 45

11 7 22
3 2 9

]
Data storage scheme for constant bandwidth sparse symmetric matrix is declared in a 

Fortran program, for example,

Integer :: m
Real :: a(m,1)

where m is the half bandwidth and a is the sparse matrix. The total length of matrix a is 

(n-1)*m+n.  Then,  the  coefficient  Aij is  programmed  in  fortran  as  a(i,j).  Fortran 

provides a very convenient way to handle sparse matrix.
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In the above example,  m=2 and  n=7, the total required length for matrix  a is  (7-

1)*2+7=19.   A subroutine to input the above example is as follow.

Subroutine input(a,m)
integer :: m
real :: a(m,1)
a(1,1) =  1.0
a(2,1) =  4.0
a(3,1) =  2.0
a(2,2) = 25.0
a(3,2) = 29.0
a(4,2) =  9.0
a(3,3) = 88.0
a(4,3) = 34.0
a(5,3) =  3.0
a(4,4) = 89.0
a(5,4) = 23.0
a(6,4) = 11.0
a(5,5) = 45.0
a(6,5) =  7.0
a(7,5) =  3.0
a(6,6) = 22.0
a(7,6) =  2.0
a(7,7) =  9.0
return
end

Matrix a requires a length of 19. In the main program (or caller) needs to declare as:

real :: a(19)

and also need to define m=2.

5.2  Variable Bandwidth Sparse Symmetric Matrix

We handle the upper triangular part for variable bandwidth sparse symmetric matrix. 

For example,
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[
1 4

2 7 2
3 6 23

4 0 22
5 22 13

sym. 6 43
7
]

Variable-bandwidth sparse symmetric solver is also called  skyline solver. Date storage 

scheme includes an address label, label, whose definition is as:
Set label (1) = 1
For i = 2 to n, do the following

label(i) = label(i-1)+[number of non-zero
                       fill-ins above the
                       diagonal in the
                       i-th column]

The address labels for the above example are  1, 2, 3, 4, 7, 8, and  11. The data storage 

scheme declares the sparse matrix in Fortran program, for example, as

real :: a(1,1)

Then,  coefficient  Aij is  programmed  in  Fortran  program  as  A(i,label(j)). Fortran 

provides a very convenient way to handle sparse matrix. The total required length of 

matrix a is defined as lable(n)-1+n where n is matrix order. In the above example, n=7 

and label(7)=11, the required length is 11-1+7 = 17. It can be verified there are 17 non-

zero fill-ins. A fortran subroutine to input the above example is as:

subroutine input (a,label)
real :: a(1,1)
integer :: label(1)
a(1,label(1)) =  1.0
a(1,label(2)) =  4.0
a(2,label(2)) =  2.0
a(2,label(3)) =  7.0
a(3,label(3)) =  3.0
a(3,label(4)) =  6.0
a(4,label(4)) =  4.0
a(3,label(5)) =  2.0
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a(4,label(5)) = 23.0
a(5,label(5)) =  0.0
a(4,label(5)) =  5.0
a(5,label(6)) = 22.0
a(6,label(6)) =  6.0
a(4,label(7)) = 22.0
a(5,label(7)) = 13.0
a(6,label(7)) = 43.0
a(7,label(7)) =  7.0
return
end
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