
JCL
Library for Reducing Bandwidth and Profile of Sparse Matrix

Copyright © 2006-2008
Feb. 11, 2008 By Equation Solution

LIST OF CONTENTS

Chapter 1. Introduction ... 1
1.1 Non-zero fill-ins and Non-zero coefficients ... 2

Chapter 2. Calling Syntax ... 3
2.1 A Fortran Example .. 4
2.2 A Bad Example ... 7

Chapter 3. Renumbering Before the Determination of Sparse Matrix 10

Chapter 4. Renumbering Asymmetric Sparse Matrix ... 14

Chapter 5. Data Storage Schemes .. 15
5.1 Constant Bandwidth Sparse Symmetric Matrix .. 15
5.2 Variable Bandwidth Sparse Symmetric Matrix .. 16

- i -

Chapter 1. Introduction

JCL is a Fortran library for reducing bandwidth and profile of sparse matrix. JCL is

also callable by C language. JCL applies the algorithm, “Algorithms for reducing the

bandwidth and profile of a sparse matrix”, authored by J.-C. Luo, published in

computers & structures, vol. 44, no. 3, 1992. The algorithm has been proved to be the

most reliable.

Most scientific and engineering problems are formulated into a symmetric system of

linear/non-linear equations, e. g., [A]{X }={B} . Because of piecewise approximation,

the symmetric matrix [A] may lead to a sparse figure, e. g.,

[
° °

° ° ° °
° ° °

° °
° ° °

° ° °
° °

° ° °
] (1.1)

where ° represents a non-zero fill-in, and other blanks represent zero coefficient. An

arbitrary symmetric sparse matrix, e. g., the above example, cannot take advantage of

sparse solvers. JCL renumbers the unknowns, e. g., rearrangement of rows and columns,

such that non-zero fill-ins are around the diagonal as:

[
° ° °
° ° °
° ° ° °

° ° °
° ° °

° °
° °
° °

] (1.2)

The sparse matrix, as shown in Eq. (1.2), then can be solved by constant bandwidth

solvers or variable bandwidth solvers. Variable bandwidth solver is also called skyline

- 1 -

solver.

The cost to solve [A]{X}={B} depends on bandwidth (or half bandwidth) and

profile. Half bandwidth is defined as the maximal ∣i− j∣ where i and j are subscripts

of non-zero fill-in Aij or A ji , and profile is defined as ∑i=1

n
max of ∣i− j∣ where i and

j are subscripts of non-zero fill-in A ji . Renumbering can significantly reduce solution

costs.

JCL provides an efficient and reliable way to reduce bandwidth and profile of a

sparse matrix. JCL is thread-safe, and can be called simultaneously in a program.

1.1 Non-zero fill-ins and Non-zero coefficients

Non-zero fill-in is different from non-zero coefficient. For the following example,

[A]=[1.0 2.0
3.0 4.0 5.0

5.0 6.0 7.0
7.0 8.0 9.0

9.0 1.0
]

The matrix has 13 non-zero coefficients. The non-zero coefficients are asymmetric

because of A12≠A21 . Non-zero fill-in is an entry with non-zero coefficient. The non-

zero fill-ins of matrix [A] are represented as follows:

[° °
° ° °

° ° °
° ° °

° °
]

In the above example, non-zero coefficients are asymmetric, but the non-zero fill-ins are

symmetric. Once non-zero fill-ins are symmetric, JCL is applicable.

- 2 -

Chapter 2. Calling Syntax

JCL is programmed in Fortran. The entry subroutine to JCL is defined as follows:
jcl(nas,n,adj,output,work,limit,flag)

where

1. nas: 4-byte integer array, dimension(n), input the number of vertices adjacent

to each vertex. Concept of adjacent vertices comes from graph theory by

which the renumbering algorithms are developed. In finite element, adjacent

vertices are similar to connected degrees of freedom. In algebra, adjacent

vertices are similar to coupled unknowns.

2. n: a 4-byte integer, input the number of unknowns, or system size, or order.

3. adj: 4-byte integer array, dimension(sum of values in array nas), input the

vertices adjacent to each vertex. E. g., vertices adjacent to the first vertex, and

then vertices adjacent to the second vertex, and so on. The required length of

array adj is equal to the sum of each value in array nas.

4. output: 4-byte integer array, dimension(n), returns the new number of

vertices.

5. work: 4-byte integer array, dimension(limit), is a working array. This array

should have a sufficient space.

6. limit: a 4-byte integer, input the dimension of array work. The dimension

cannot be determined in advance because of the nature of algorithm. An

estimation is as:
13*n+(sum of values in array nas)

JCL is a memory eater, but is not a CPU time eater. Computer memory is a

not an issue on modern computer. The estimation can fit for most problems.

7. flag: 4-byte integer, returns the status

= 1 , successful entry. The array output has new number of

vertices.

= 0 , the limit of array work is insufficient. User can re-run JCL

with a big dimension of work.

- 3 -

= −i , incorrect adjacent vertices, where i is an integer value.

User should check vertices adjacent to the vertex “i” and

vertices adjacent to adjacent vertices of vertex “i”.

2.1 A Fortran Example

Let us consider the 8×8 example as shown in Eq. (1.1). The information of

adjacent vertices can be summarized as:

Vertex Adjacent Vertices Number of
Adjacent Vertices

1 5 1
2 3,6,8 3
3 2,5 2
4 7 1
5 1,3 2
6 2,8 2
7 4 1
8 2,6 2

The following is a Fortran example showing how to call JCL.

 integer (4), parameter :: n = 8
 integer (4) :: nas(n)
 integer (4) :: output(n)
 integer (4) :: adj(14) !! why 14?
 !! see program segment of
 !! “number of adjacent vertices”
 integer (4), parameter :: limit = 13*n+14
 !! JCL is memory eater
 integer (4) :: work(limit)
 integer (4) :: flag

 !
 ! number of adjacent vertices
 ! by the 3rd column of above table
 !

- 4 -

 nas(1) = 1
 nas(2) = 3
 nas(3) = 2
 nas(4) = 1
 nas(5) = 2
 nas(6) = 2
 nas(7) = 1
 nas(8) = 2 !! sum of values = 14
 !! adj is declared as dimension(14)

 !
 ! adjacent vertices
 ! by the 2nd column of the above table
 !
 !! vertex adjacent to vertex 1
 adj(1) = 5

 !! vertices adjacent to vertex 2
 adj(2) = 3
 adj(3) = 6
 adj(4) = 8

 !! vertices adjacent to vertex 3
 adj(5) = 2
 adj(6) = 5

 !! vertex adjacent to vertex 4
 adj(7) = 7

 !! vertices adjacent to vertex 5
 adj(8) = 1
 adj(9) = 3

 !! vertices adjacent to vertex 6
 adj(10) = 2
 adj(11) = 8

 !! vertex adjacent to vertex 7
 adj(12) = 4

 !! vertices adjacent to vertex 8
 adj(13) = 2
 adj(14) = 6

 !
 ! renumber by JCL
 !
 call jcl(nas,n,adj,output,work,limit,flag)

 !
 ! output the new number
 !
 write(*,*) "flag",flag
 if(flag.eq.1) write(*,*) output

- 5 -

 !
 ! end of program
 !
 end

The output of new order is: 6 3 4 8 5 2 7 1. That

means the vertex 1 should be numbered as 6, and vertex 2 should be numbered as 3, and

so on. By the new order, user can copy rows of the original matrix in Eq. (1.1) to a new

matrix. For example, user can copy row 1 to row 6 of new matrix, and similarly copy row

2 to row 3, and so on. The row arrangement gets the following sparse figure:

[
° ° °
° ° °
° ° ° °
° ° °

° ° °
° °

° °
° °

] (1.3)

Then, by the new order (6 3 4 8 5 2 7 1), user can copy columns in Eq. (1.3) to a new

matrix. For example, copy column 1 to column 6 of new matrix, and similarly copy

column 2 to column 3, and so on. Arrangement of columns of the matrix in Eq. (1.3) gets

the perfect sparse figure as shown in Eq. (1.2).

The above example shows that bandwidth and profile of a sparse matrix are reduced

by rearranging rows and columns of matrix [A]. Renumbering after the matrix [A] is

determined is less efficient and less popular. In most scientific and engineering

applications, vertices are renumbered before a sparse matrix is determined. The next

Chapter will illustrate how to renumber vertices without matrix [A].

2.2 A Bad Example

Let us use the previous 8×8 example to illustrate how to find error in input data.

- 6 -

The information of adjacent vertices is as follows:

Vertex Adjacent Vertices Number of
Adjacent Vertices

1 5 1
2 3,6,8 3
3 2,5 2
4 7 1
5 1,3 2
6 2,8 2
7 4 1
8 2,6 2

The vertex 6 has adjacent vertices 2 and 8. Here on purpose input incorrect adjacent

vertices 3 and 8. The example program is as follow:

 integer (4), parameter :: n = 8
 integer (4) :: nas(n)
 integer (4) :: output(n)
 integer (4) :: adj(14)
 integer (4), parameter :: limit = 13*n+14
 integer (4) :: work(limit)
 integer (4) :: flag

 !
 ! number of adjacent vertices
 !
 nas(1) = 1
 nas(2) = 3
 nas(3) = 2
 nas(4) = 1
 nas(5) = 2
 nas(6) = 2
 nas(7) = 1
 nas(8) = 2

 !
 ! adjacent vertices
 !
 !! vertex adjacent to vertex 1
 adj(1) = 5

 !! vertices adjacent to vertex 2

- 7 -

 adj(2) = 3
 adj(3) = 6
 adj(4) = 8

 !! vertices adjacent to vertex 3
 adj(5) = 2
 adj(6) = 5

 !! vertex adjacent to vertex 4
 adj(7) = 7

 !! vertices adjacent to vertex 5
 adj(8) = 1
 adj(9) = 3

 !! vertices adjacent to vertex 6
 adj(10) = 3 !! (error: It should be 2)
 adj(11) = 8

 !! vertex adjacent to vertex 7
 adj(12) = 4

 !! vertices adjacent to vertex 8
 adj(13) = 2
 adj(14) = 6

 !
 ! renumber by JCL
 !
 call jcl(nas,n,adj,output,work,limit,flag)

 !
 ! output the new number
 !
 write(*,*) "flag",flag
 if(flag.eq.1) write(*,*) output

 !
 ! end of program
 !
 end

The output flag is -2. That gives a hint that an error may happen to the vertices adjacent

to vertex 2 or happens to the vertices adjacent to vertices adjacent to vertex 2. User needs

to check the following:

1) First, check vertices adjacent to vertex 2. Vertices adjacent to vertex 2 includes
3, 6, and 8. Data input to JCL is 3, 6, and 8. The input is correct. Then, check
vertices adjacent to 3, 6, and 8.

2) Vertices adjacent to vertex 3 are 2 and 5. Data input to JCL is 2 and 5. It is
correct.

- 8 -

3) Vertices adjacent to vertex 6 are 2 and 8. However, Data input to JCL is 3 and 8.
We find the error.

The return flag gives a hint to find an input error.

- 9 -

Chapter 3. Renumbering Before the Determination of
Sparse Matrix

This Chapter illustrates how to renumber vertices before the determination of matrix

[A]. Renumbering is important in scientific and engineering computing. Most scientific

and engineering problems can be formulated into a system of equations, i.e.,

[A]{X }={B} where matrix [A] is symmetric and sparse. The unknowns can be

renumbered before the determination of matrix [A] . For example, let us consider the

engineering problem, as shown in Figure 1.

It is a cable. The example solves horizontal and vertical displacements at five joints,

each of which has horizontal and vertical displacements. Each displacement is equivalent

to a vertex in renumbering algorithms. This example has a total of 10 vertices, and are

initially labeled from 1 to 10 in Figure 1. We won't use the initial number to solve

displacements, but use the initial number to define adjacent vertices. The adjacent

vertices are required by JCL. By Figure 1, we can define the adjacent vertices as:

Vertex Adjacent Vertices Number of
Adjacent Vertices

1 2,6,7 3
2 1,3,6,7,8 5
3 2,4,7,8,9 5

- 10 -

Vertex Adjacent Vertices Number of
Adjacent Vertices

4 3,5,8,9,10 5
5 4,9,10 3
6 1,2,7 3
7 1,2,3,6,8 5
8 2,3,4,7,9 5
9 3,4,5,8,10 5

10 4,5,9 3

A vertex is equivalent to a degree of freedom (hereinafter “dof”) in finite element

method, and adjacent vertices are equivalent to coupled degrees of freedom. If user has a

background with finite element method, it is easy to verify the coupled dof with respect to

each dof can be summarized as:

dof coupled dof
1 2,6,7
2 1,3,6,7,8
3 2,4,7,8,9
4 3,5,8,9,10
5 4,9,10
6 1,2,7
7 1,2,3,6,8
8 2,3,4,7,9
9 3,4,5,8,10

10 4,5,9

Adjacent vertices and coupled dof identify connectivity. This manual uses the term

“adjacent vertices” for illustration. Applying the above adjacent vertices to JCL, the new

number of vertices is as:
10 8 6 4 2 9 7 5 3 1

E. g., replace “number 1” in Figure 1 with “number 10”, and replace “number 2” with

- 11 -

“number 8”, and so on. The new number is labeled as:

We apply the new number labeled in Figure 2 to solve displacements, e.g., by finite

element method. The connectivity in Figure 2 shows the following:

1) At vertex 1, vertices 1, 2, 3, and 4 are connected (or coupled). That means, on the

first row of [A], columns 1, 2, 3, and 4 have non-zero fill-ins.

2) At vertex 2, vertices 1, 2, 3, and 4 are connected. On the second row of [A], columns

1, 2, 3, and 4 have non-zero fill-ins.

3) At vertex 3, vertices 1, 2, 3, 4, 5, and 6 are connected. One the third row of [A],

columns 1, 2, 3, 4, 5, and 6 have non-zero fill-ins.

4) and so on.

The new number of vertices leads the following matrix [A] :

[
A11 A12 A13 A14

A21 A22 A23 A24

A31 A32 A33 A34 A35 A36

A41 A42 A43 A44 A45 A46

A53 A54 A55 A56 A57 A58

A63 A64 A65 A66 A67 A68

A75 A76 A77 A78 A79 A7,10

A85 A86 A87 A88 A89 A8,10

A97 A98 A99 A9,10

A10,7 A10,8 A10,9 A10,10

]
- 12 -

User can use the new numbers to calculate matrix [A] without a rearrangement of rows

and columns. The procedure to renumber vertices can be summarized as follows:

1) Arbitrarily number the vertices

2) Define adjacent vertices by the initial number

3) Apply JCL to get new number.

- 13 -

Chapter 4. Renumbering Asymmetric Sparse Matrix

When renumbering a matrix with asymmetric non-zero fill-ins, it is necessary to

expand the asymmetric figure into a symmetric figure. For example, the following has an

asymmetric non-zero fill-ins:

[° ° °
°
° ° °

° ° °
° °

]
The asymmetric figure needs to be expanded into a symmetric figure by copying the

transpose of upper triangular part into the lower triangular part, and copying the transpose

of lower triangular part into the upper triangular part. The expanded symmetric figure

becomes:

[° ° ° °
° ° °

° ° °
° ° ° °
° ° °

]
Then, JCL renumbers the expanded sparse matrix that has a symmetric non-zero fill-ins.

- 14 -

CHAPTER 5. Data Storage Schemes

Sparse matrix can be efficiently handled by a proper data storage schemes. Among

computer languages, Fortran is most suitable for sparse matrix operations. This chapter

will introduces data storage schemes for constant-bandwidth and variable-bandwidth

sparse symmetric matrices. For sparse asymmetric matrices, please refer to LAIPE

manual.

5.1 Constant Bandwidth Sparse Symmetric Matrix

The data storage scheme is applicable in subroutine (or function). Sparse matrix is

passed as a dummy argument. Since it is symmetric, we handle the lower triangular part.

For example,

[
1
4 25 sym.
2 29 88

9 34 89
3 23 45

11 7 22
3 2 9

]
Data storage scheme for constant bandwidth sparse symmetric matrix is declared in a

Fortran program, for example,

Integer :: m
Real :: a(m,1)

where m is the half bandwidth and a is the sparse matrix. The total length of matrix a is

(n-1)*m+n. Then, the coefficient Aij is programmed in fortran as a(i,j). Fortran

provides a very convenient way to handle sparse matrix.

- 15 -

In the above example, m=2 and n=7, the total required length for matrix a is (7-

1)*2+7=19. A subroutine to input the above example is as follow.

Subroutine input(a,m)
integer :: m
real :: a(m,1)
a(1,1) = 1.0
a(2,1) = 4.0
a(3,1) = 2.0
a(2,2) = 25.0
a(3,2) = 29.0
a(4,2) = 9.0
a(3,3) = 88.0
a(4,3) = 34.0
a(5,3) = 3.0
a(4,4) = 89.0
a(5,4) = 23.0
a(6,4) = 11.0
a(5,5) = 45.0
a(6,5) = 7.0
a(7,5) = 3.0
a(6,6) = 22.0
a(7,6) = 2.0
a(7,7) = 9.0
return
end

Matrix a requires a length of 19. In the main program (or caller) needs to declare as:

real :: a(19)

and also need to define m=2.

5.2 Variable Bandwidth Sparse Symmetric Matrix

We handle the upper triangular part for variable bandwidth sparse symmetric matrix.

For example,

- 16 -

[
1 4

2 7 2
3 6 23

4 0 22
5 22 13

sym. 6 43
7
]

Variable-bandwidth sparse symmetric solver is also called skyline solver. Date storage

scheme includes an address label, label, whose definition is as:
Set label (1) = 1
For i = 2 to n, do the following

label(i) = label(i-1)+[number of non-zero
 fill-ins above the
 diagonal in the
 i-th column]

The address labels for the above example are 1, 2, 3, 4, 7, 8, and 11. The data storage

scheme declares the sparse matrix in Fortran program, for example, as

real :: a(1,1)

Then, coefficient Aij is programmed in Fortran program as A(i,label(j)). Fortran

provides a very convenient way to handle sparse matrix. The total required length of

matrix a is defined as lable(n)-1+n where n is matrix order. In the above example, n=7

and label(7)=11, the required length is 11-1+7 = 17. It can be verified there are 17 non-

zero fill-ins. A fortran subroutine to input the above example is as:

subroutine input (a,label)
real :: a(1,1)
integer :: label(1)
a(1,label(1)) = 1.0
a(1,label(2)) = 4.0
a(2,label(2)) = 2.0
a(2,label(3)) = 7.0
a(3,label(3)) = 3.0
a(3,label(4)) = 6.0
a(4,label(4)) = 4.0
a(3,label(5)) = 2.0

- 17 -

a(4,label(5)) = 23.0
a(5,label(5)) = 0.0
a(4,label(5)) = 5.0
a(5,label(6)) = 22.0
a(6,label(6)) = 6.0
a(4,label(7)) = 22.0
a(5,label(7)) = 13.0
a(6,label(7)) = 43.0
a(7,label(7)) = 7.0
return
end

- 18 -

